
 

Requirements ModelsRequirements Models  forfor
System Safety and SecuritySystem Safety and Security

Connie HeitmeyerConnie Heitmeyer
Naval Research LaboratoryNaval Research Laboratory

International Summer School
Marktoberdorf
August 2010

223.08.2010

OVERVIEW

• Introduction to the Requirements Problem
• Four Variable Model and SCR

– Formal Requirements Model
– Analysis of Requirements Models

• Verifying Source Code for Security Properties:
A Practical Application

• An incremental, model-based method for
developing critical software

– Example applying the method to fault-tolerance



THE CURRENT STATE OF
SOFTWARE

423.08.2010

Dramatic Increase in the
Size and Complexity of Software

80%F-222000
45%F-161982
8%F-41960

% of Pilot FunctionsAircraftYear

Millions
of lines
of code

in
systems

Growth
of software
in military

aircraft



523.08.2010

Of the Major Components of Systems,
SOFTWARE Is the Most Problematic

new navigation software caused six of
seven total system aborts.

Details Emerge On Armyʼs
Failed NLOS-LS Missile

In testimony before lawmakers yesterday,
David Duma…detailed failings of the Army
Non-Line of Sight Launch System (NLOS-
LS).  During most recent tests in February,

Defense Tech, April 16, 2010

“‘Friendly Fire’ Deaths Traced to Dead Battery: Taliban
Targeted, but US Forces Killed,” Wash. Post, 22 Mar. 2002

The soldier and three comrades were killed in the
incident.

A U.S. soldier in Afghanistan used a Precision
Lightweight GPS Receiver to set coordinates for an
air strike. Seeing that the “battery low” warning light
was on, he changed the battery, then pressed “Fire.”
The device was designed, on starting or resuming
operation after a battery change, to initialize the
coordinate variables to its own location…

DOD … spends about 40%
of its Research,
Development, Test, and
Evaluation budget on
software—$21B for fiscal
year 2003 ... DOD and
industry experience
indicates that about $8B
(40 percent) of that amount
may be spent on
reworking software
because of quality-
related issues.

U.S. GAO, “Defense Acquisitions,”
2004 Report to

Committee on Armed Services
U.S. Senate

623.08.2010

MANY OTHER EXAMPLES OF
SOFTWARE FAILURES*

Aviation:  Many recent incidents illustrate risks due to software
• 1997 crash of Korean 747 in Guam:  200 deaths that probably could have

been avoided if altitude warning system had been configured correctly
• 2004 air traffic control outage in Palmdale CA disrupted 800 flights:

– Prevented any voice communications between controllers and aircraft
– Aircraft violated minimum separation distance five times; only because of airline collision

avoidance systems that no collisions occurred

Medical Devices:  Failures in medical devices can be lethal
• From 1990-2000, safety recalls of pacemakers and implantable

defibrillators due to software problems affected over 200,000 devices
• From 1992-98, an FDA study found that 242 of 3,140 device recalls were

due to faulty software (80%+ due to defects introdʼd in maintenance)
Voting: Much voting software is insecure and unreliable
• In 2006 in Sarasota FL, election was decided by a margin of 363 votes

– But 18,000+ ballots cast on electronic voting machines did not register
a vote

*Jackson et al., Software for Dependable Systems:  Sufficient Evidence?, NAS, 2007.



THE IMPORTANCE OF
HIGH-QUALITY REQUIREMENTS

823.08.2010

REQUIREMENTS ERRORS ARE
PERVASIVE AND COSTLY

1.  The majority of software errors
are introduced early in software
development

KEY:          
       error introduced
       error detected

design

DEVELOPMENT PHASE

  0

10

20

30

40

50

de
ve

lo
pm

en
t e

rr
or

s
de

ve
lo

pm
en

t e
rr

or
s

Pe
rc

en
t o

f a
ll 

so
ftw

ar
e

Pe
rc

en
t o

f a
ll 

so
ftw

ar
e

requirementsrequirements
and and 

functionalfunctional
analysisanalysis

construction
and system
dev’mt test

acceptance
testing and
operation

2.  The later software errors are
detected, the more costly they are
to correct

PHASE IN WHICH ERROR
DETECTED

co
rr

ec
t a

n 
er

ro
r

co
rr

ec
t a

n 
er

ro
r

  2
 1

5
10
20
50

100

require-require-
mentsments

design code
debug

unit test,
integration

acceptance
test

initial
operation

R
el

at
iv

e 
co

st
 to

R
el

at
iv

e 
co

st
 to



923.08.2010

THE REQUIREMENTS PROBLEM:
FORMAL METHODS RESEARCHERS* 

In spite of…advancements…, the biggest problem in software engineering
[is] the bridging of the ʻgapʼ between the intent captured in requirements
and expressed at a high level, and the detailed encoding of this intent in
the code. There are no good tools, either mental or mechanical, that allow
comprehension of large programs, and provide a mapping between
how…parts of the code work together to satisfy the requirements…

Sriram Rajamani, “Software is more than code”

Jean-Raymond Abrial, “Theory becoming practice”

A final difficulty encountered in modeling is the frequent lack of good
requirement documents associated with the project. Most of the time,
industrial requirement documents are either almost nonexistent or far too
verbose. Usually they have to be rewritten before serious modeling starts.

There is general consensus that the most significant problems in software
development are due to inadequate requirements, especially where these
concern what one component or subsystem may expect of another.

John Rushby, “Automated formal methods enter the mainstream”

*Journal of Universal Computer Science, May 2007

1023.08.2010

WRITING GOOD REQUIREMENTS
IS VERY DIFFICULT

The hardest single part of building a
software system is deciding precisely what
to build.  No other part of the conceptual

work is as difficult as establishing the
detailed technical requirements…No other
part of the work so cripples the resulting
system if done wrong.  No other part is

more difficult to rectify later.
Fred Brooks

“No Silver Bullet:  Essence and Accidents 
of Software Eng.,” Computer, 1987



1123.08.2010

GOOD REQUIREMENTS:
PAYOFF

A solid foundation for demonstrating high
assurance that the implementation satisfies
critical system properties, e.g.,

• Safety
• Security
• Timing
• Fault-tolerance
• Service

THE REQUIREMENTS PROBLEM



1323.08.2010

REQUIREMENTS GOAL

• Requirements Goal:  Specify the set of all acceptable
implementations

– Avoid underspecification (completeness)
– Avoid overspecification (freedom from implementation bias)

• Target:  High Assurance Systems
– Complex, often large, embedded systems

» Avionics systems, medical systems, control systems
» Expensive and difficult to build correctly

– Software is safety-critical/security-critical/…
» Small errors -> BIG PROBLEMS!
» High cost of failure

1423.08.2010

THE FORMAL METHODS DILEMMA

• Standard approaches (e.g., prose specs) lack
sufficient rigor to meet high-assurance goals

• Formal requirements methods have desired
technical attributes but viewed as impractical for
large, complex systems

– Capability for unambiguous specification, precision, testability,
and analyzability

– Industry wants practical methods
» Specs should be easy to read and write, should not require

mathematical sophistication, method must scale
» Concern for real-world issues of fuzzy or changing

requirements
» Concern for fit with current development method
» Adds up to perceived cost/schedule risk

• Implication: Need for “Practical” Formal Methods



FOUR VARIABLE MODEL

1623.08.2010

FOUR VARIABLE MODEL*

• Generalized approach to requirements in A-7
requirements document (Heninger, TSE, 1980)

• Requirements are specified in two stages
– Ideal system behavior (I.e., normal behavior)
– Real system behavior

• The required system behavior is expressed in terms of
quantities in its environment

– The application dictates the environmental quantities of
interest

– The relevant env. quantities are represented as
mathematical variables called environmental variables

(1) Monitored Variables:  env. quantities that the system monitors
(e.g., temperature, pressure, altitude)

(2) Controlled  Variables: env. quantities that the system controls
(e.g., displayed value, throttle)

*D. Parnas and J. Madey, Science of Computer Programming, 1995.

Two of the
Four Variables 

of the FVM



1723.08.2010

MONITORED AND
CONTROLLED VARIABLES

• To define the ideal system behavior, the
requirements specification must

– Identify and specify the controlled variables
– Identify and specify the monitored variables
– Specify the required relation betw. monitored and

controlled vars
• Approach similar but not the same as Jacksonʼs

– World     -> Environment
– Machine ->  Software (not System)

Environment

Monitored
Variables

System

Controlled
Variables

Environment

1823.08.2010

Display

IDEAL SYSTEM BEHAVIOR

A
l
t
i
t
u
d
e

Monitored
Variables

Controlled
Variables

Flight
System

Simplifying Assumption:
System can perfectly measure

the values of the monitored
and controlled variables



1923.08.2010

• In specifying the real system behavior, the
simplifying assumption is removed

• The values of input and output variables are read
from input and output devices

(3) Inputs: variables from which the values of monitored
      variables may be estimated
(4) Outputs: variables available to affect controlled variables

Other
Two

Variables
of the
FVM

INPUT AND
OUTPUT VARIABLES

Monitored
Variables

Controlled
VariablesSystem

input
devices

output
devicesSoftware

Input
Variables

Output
Variables

EnvironmentEnvironment

2023.08.2010

s
e
n
s
o
r

I
n
t
e
r
f
a
c
e

A/D

I
n
t
e
r
f
a
c
e

Software

Input Output

A
l
t
i
t
u
d
e

Monitored
Variables

Display

Controlled
Variables

REAL SYSTEM BEHAVIOR

Simplifying Assumption
is removed



2123.08.2010

FOUR RELATIONS OF THE
FOUR VARIABLE MODEL

• Two relations on monitored and controlled vars
– NAT - Constraints imposed by the environment (e.g.,

physical laws, constraints of system environment)
– REQ - Additional “constraints” system must impose

on the environment to produce the required system
behavior

• Two other relations
– IN:  Relation betw. monitored variables and inputs
– OUT:  Relation betw. outputs and controlled variables

2223.08.2010

FOUR VARIABLES AND FOUR
RELATIONS OF THE FVM

IN OUT

REQ and NAT

Monitored
Variables

Controlled
VariablesSystem

input
devices

output
devicesSoftware

Input
Variables

Output
Variables

EnvironmentEnvironment



2323.08.2010

s
e
n
s
o
r

I
n
t
e
r
f
a
c
e

A/D

I
n
t
e
r
f
a
c
e

Software

Input Output

THE FOUR VARIABLE VIEWPOINT:
VARIABLES

A
l
t
i
t
u
d
e

Monitored
Variables

Display

Controlled
Variables

REQ

NAT

IN OUT

SCR REQUIREMENTS MODEL:
OVERVIEW



2523.08.2010

SCR:  A “PRACTICAL” FORMAL METHOD

SCR was developed to address industry concerns
while providing the benefits of a formal approach

• Four-Variable Model (Parnas 1991-1995)
• SCR Requirements Model (NRL 1992 - Present)

– Special case of the Four Variable Model
– Based on a state machine model
– Explicit formal semantics
– Major goal:  Tool-based requirements method

» Formal basis for tool-assisted consistency checking,
simulation, formal verification, etc.

SCR:  Software Cost Reduction

2623.08.2010

SCR REQUIREMENTS MODEL (1)

• Two classes of environmental variables
–Monitored variables
–Controlled variables

• Two classes of  auxiliary variables
– Modes: capture the history of values of

monitored vars
– Terms: functions on one or more state vars

• REQ specified by a set of functions
defined on the state vars

• NAT includes a set of assumptions
defined on the env vars

state
variables



2723.08.2010

SCR REQUIREMENTS MODEL (2)

• Two classes of state predicates
– Condition: a predicate on a single state

Altitude > 500 or  Pressure = 500
– Event: a predicate on two states - denotes a

change in state
@T(Altitude > 500)

• Changes in monitored vars (monitored events)
provide input alphabet of the state machine

– Model is input-driven by monitored event
• The value of each dependent state variable

(mode class, term, controlled var)
– Is represented as a function in a table format

• The next state function of the state machine
– Is the composition of these functions

2823.08.2010

• Based on a control system in a real nuclear power plant*
• System required to turn on safety injection when water

pressure falls below a threshold ʻLowʼ
• Operator can set a Block button to inhibit safety injection

and a Reset button to reset the system after blockage

*Courtois,Parnas, “Documentation for Safety-Critical Software,” Proc., ICSEʼ93, Baltimore

EXAMPLE MODEL:  CONTROL SYSTEM
FOR SAFETY INJECTION (1)

Safety Injection SystemEnvironment
WaterPres

Block
Reset

Safety
Injection

Monitored
Variables

Controlled
Variable

Environment

IDEAL SYSTEM BEHAVIOR



2923.08.2010

To estimate water pressure, the system uses
three sensors

EXAMPLE MODEL:  CONTROL SYSTEM
FOR SAFETY INJECTION (2)

Environment
WaterPres

Block
Reset

Safety
Injection

Environment

REAL SYSTEM BEHAVIOR

Safety Injection System

Software
Input

Devices

Sensor1
Safety

Injection
Device

Sensor2

Sensor3

Input
Devices

Output
Devices

Monitored
Variables

Controlled
Variable

3023.08.2010

• Mode Class Pressure - abstraction of WaterPres
• Term Overridden - denotes whether operator has

overridden injection
• Controlled variable SafetyInjection - defined in

terms of terms, modes, and monitored variables

EXAMPLE MODEL:  CONTROL SYSTEM
FOR SAFETY INJECTION (3)

Safety Injection SystemEnvironment
WaterPres

Block
Reset

Safety
Injection

Environment

Pressure
TooLow High

Permitted

Mode
Class

Overridden

TermTerm

Low
Permit

ConstantsConstants



3123.08.2010

SUMMARY

• Specifying requirements precisely probably the
most difficult aspect of software devʼment

– Good requirements specs in industry are very rare
• Needed:  “Practical” formal methods for

specifying/analyzing requirements
• To design for ease of change, requirements

should be specified in at least two stages
– Normal (Ideal) System Behavior first
– Real Behavior later


