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NAT:  All possible behaviors satisfying natural laws,
constraints on the system env
REQ:  All acceptable system behaviors
SOFT:  All acceptable software behaviors

BEHAVIORS (POSSIBLE VS. 
ACCEPTABLE) AND PROPERTIES 

All
behaviors

NAT

All
behaviors
satisfying
property p

REQ SOFT
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OVERVIEW

• Introduction to the Requirements Problem
• Four Variable Model and SCR

– Formal Requirements Model
– Tools for Analyzing Requirements Models
– Applying the Tools to Practical Systems

• Verifying Source Code for Security Properties:  A
Practical Application

• An incremental, model-based method for developing
critical software

– Example applying the method to fault-tolerance

SCR REQUIREMENTS
MODEL
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WHAT QUESTIONS DOES THE
SCR MODEL ADDRESS?

• What units of discourse are useful in specifying
the required software system behavior?

– Monitored & controlled variables, terms, and modes
– Conditions and events

• How are system outputs (i.e., controlled vars)
represented as mathematical functions?

– Role of terms and modes
– Semantics of SCR tabular format

• How can the required behavior of a system be
represented as a state machine?
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We assume the existence of a number of sets including
• RF is the set of state variable names

– RF is partitioned into sets of mode class names, monitored
variable names, term names, and controlled variable names

• TS is a union of types, where each type is a nonempty
set of values

• For all r in RF, TY(r) ! TS is the range type of r
– TY(r) is the set of possible values of r

DEFINITIONS: VARIABLES,
TYPES, AND SYSTEM STATE

A system state s is a function that maps each
state variable name r in RF to a value in TY(r)
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DEFINITION:
SYSTEM

Note:  Our state machine model is NOT a Mealy machine
      " the system outputs (i.e., controlled vars) are
           included in the state
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• Mode Class Pressure - abstraction of WaterPres
• Term Overridden - denotes whether operator has

overridden injection
• Controlled variable SafetyInjection - defined in

terms of terms, modes, and monitored variables

EXAMPLE MODEL:  CONTROL SYSTEM
FOR SAFETY INJECTION (3)

Safety Injection SystemEnvironment
WaterPres

Block
Reset

Safety
Injection

Environment

Pressure
TooLow High

Permitted

Mode
Class

Overridden

TermTerm

Low
Permit

ConstantsConstants
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EXAMPLE:  SYSTEM STATE

The example control system contains the following sets:
Set of monitored variables: {Block, Reset, WaterPres}
Set of controlled variables:  {SafetyInjection}
Set of terms:       {Overridden}
Set of mode classes:       {Pressure}

Type definitions associated with these sets are
       TY(WaterPres) = {1, 2, ..., 2000}
              TY(SafetyInjection = {On, Off}
       TY(Block) = TY(Reset) = {On, Off}
     TY(Overridden) = {true, false}
         TY(Pressure) = {TooLow, Permitted, High}

WaterPres Block Reset Pressure Overridden SafetyInjection

850 Off On TooLow false Off

Example of a System State

variable
name

variable
value {

{
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EXAMPLES:
CONDITIONS AND EVENTS

states ...
s0 s’s

Reset=Off Reset=Off
WaterPres=899 WaterPres=900

Reset=Off
WaterPres=25

 
simple condition Reset=Off;   Reset=Off;        true in s and s’

WaterPres<900   WaterPres<900        true in s, false in s’
condition Reset=Off AND   Reset=Off AND        true in s, false in s’

WaterPres<900    WaterPres<900
      Reset=Off OR   Reset=Off OR        true in s and s’

 WaterPres<900     WaterPres<900
primitive event @T(WaterPres=900)   WaterPres≠9 00 AND  true in (s, s’)

      WaterPres’=900
@T(Reset=Off)    Reset≠Off &        false in (s, s’)
           Reset’=Off

conditioned event @T(WaterPres=900)   WaterPres≠9 00 AND  true in (s, s’)
   WHEN Reset=Off  WaterPres’=900 AND
                                        Reset=Off

EvaluationConcept Syntax Semantics
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DENOTING FUNCTIONS
USING TABLES

Advantages of a tabular notation
• Less error-prone than, e.g., logic notation

– Structure provided by tables eliminates whole classes of errors
• More scalable than many other notations

– For example, graphic notations, such as finite state diagrams,
do not scale well to practical applications

» The labels on the transitions are often too long
» Not practical when the number of states is large
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EXAMPLE OF A
CONDITION TABLE

Mode Pressure Condition

High, Permitted True False

TooLow Overridden NOT Overridden

SafetyInjection = Off On

The table defines SafetyInjection as a function of a single state.
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CONDITION TABLE:
FORMAL DEFINITION

no missing cases
no ambiguity

These four properties guarantee that the function is total
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EXAMPLE OF AN EVENT TABLE

Mode Pressure Event

High Never @F(Pressure = High)

TooLow,
Permitted

@T(Block = On)
  WHEN Reset = Off

@T(Pressure = High) OR
@T(Reset = On)

Overridden’ = True False

no
change

Defines Overridden as a function of two states
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EVENT TABLE:
FORMAL DEFINITION

no ambiguity

no missing cases
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EXAMPLE OF A
MODE TRANSITION TABLE

Based on the above mode transition table and the old and new dependencies sets 
{WaterPres, Pressure} and {WaterPres}, the function defining the value of 
Pressure, denoted F4, is described by

NAT: Pressure = TooLow # Pressure’ $ {TooLow, Permitted} % …  

No
transitions 
possible from
TooLow to 
High and vice
versa
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MODE TRANSITION TABLE:
DEFINITION

A mode transition
table with this format
which satisfies the
four properties is a
special case of an
event table.
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• Based on their dependencies, the state variables may
be partially ordered.

– Each monitored variable is independent of any other
variable, including other monitored variables

– Each mode class can only depend on the monitored
variables, the mode classes and terms preceding it in the
partially order, and similarly each term …

– Each controlled variable can depend on the monitored
variables, mode classes, terms, and any controlled variables
that precede it in the partial order

• Thus the variables in RF can be ordered as a
sequence R, a topological sort of RF, based on their
dependencies

PARTIAL ORDERING
OF THE VARIABLES
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DEPENDENCIES
AMONG THE VARIABLES

SafetyInjection

WaterPres

Overridden

Pressure

Reset

Monitored Vars MODES        &      TERMS

Level 1 Level 3Level 2 Level 4

Block

Controlled Vars

2023.08.2010

TRANSFORM FUNCTION
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GUARANTEED PROPERTIES
OF THE TRANSFORM T

Lack of circularity and the conditions that the
tables must satisfy guarantee important
properties of the transform T:

1. T is complete:  For each monitored event that may
occur, at least one new system state is completely
defined

2. T is deterministic: For each monitored event that
may occur, at most one new system state is defined

REQUIREMENTS
TOOLSET
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• Proving p invariant often fails without the aid of auxiliary
invariants

• Major difficulty:  Finding strong enough auxiliary invariants
so that the proof succeeds

State
Machine &

Property p
is an invariant

THEOREM
PROVER

AUTOMATICALLY 
GENERATING INVARIANTS

AUXILIARY
INVARIANTS

Automatically construct state invariants from specs

PROBLEM IN
THEOREM PROVING

ONE SOLUTION

How to obtain these??
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SPECIFY
THE SYSTEM
PRECISELY

Use a TABULARTABULAR
notation with an
explicit formal 
semantics to 
specify  the
required 
behavior

APPLY
“CONSISTENCY

CHECKING”

Automatically 
check spec for
syntax/type errors,
missing cases,
nondeterminism,
circular defs, etc.

SIMULATE
THE

SYSTEM
BEHAVIOR

Symbolically
execute the
system based
on the
(executable)
req. specs

SCRSCR GOAL:  MAKE ʻFORMAL
METHODSʼ PRACTICAL 

As we move down the
chain, we increase
assurance in the spec

INCREASING EFFORT,

INCREASED EXPERTISE

VERIFY
SPECS USING

THEOREM PROVING

VERIFY
SPECS USING

MODEL CHECKING
Check
critical
application
properties

• Scalable tabular notation
• Integrated set of software tools

– light-weight tools (easy to use)
– heavy-duty tools (e.g., theorem prover)
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AN SCR REQUIREMENTS SPEC:
A COLLECTION OF TABLES

TYPE
DICTIONARY

user-defined
types

VARIABLE
DICTIONARY

CONSTANT
DICTIONARY

types, 
initial values,

and other 
var info

TABLES DEFINING
THE DEPENDENT 

VARIABLES

REQ

Defines the Requirements Model

ASSUMPTIONS
DICTIONARY

NAT constraints

ASSERTIONS
DICTIONARY
E.g., security
and safety 
properties

Defines
Desired

Properties
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CONSISTENCY CHECKING
• Checks well-formedness of the spec

– Does the spec satisfy the formal model?
– CC checks spec for application-independent

properties, including properties required of the tables
– Is the spec syntax-correct, type-correct, …?

• Analyzing Disjointness and Coverage
– Check that certain logical formulas defined on

conditions and events are tautologies; e.g., given a
condition table
Disjointness:  Check that the entries c1 and c2 in
each pair of cells in each row satisfy c1  %  c2 = false
Coverage:  Check that the entries in each row satisfy
c1 ' c2 ' ... ' cn = true



2723.08.2010

Next
Event

“Executed”
Events

USING THE SIMULATOR 
FOR VALIDATION

System
State

Simulator Display

Dependent VarsMonitored Vars

Simulator Log
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CHECKING ASSERTIONS
WITH THE SIMULATOR

Simulator Display

Simulator Log

Assertion
Dictionary

At step 4, the 
simulator
has detected
a violation of
an assertion.  
Clicking
on the warning 
msg. in the log
highlights the
failed assertion. 

ASSERTION:  BombRelease = on # ReleaseEnable = on



 

A FRONT-END FOR THE SIMULATOR
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State machine &
   state space S
   initial state predicate (
   next-state relation )

Abstract machine &*
   state space S*
   initial state predicate (*
   next-state relation )*

SS
SS**

+ : S " S* 

• Given a property q, we want the following to hold:
– q* is an invariant of &*  implies that q is an invariant of & (soundness)
– q is an invariant of &  if qA is an invariant of &* (completeness)

          (thus, a counterexample to qA is found in &* implies q is not  an invariant of &)
• Two kinds of invariants of interest

– properties of each reachable state (state invariants)
– properties of each pair of reachable states in relation ) (transition invariants)

abstraction mapping
property q property qA

ALWAYS PROPERTIES

NEXTIME PROPERTIES

MODEL CHECKING SCR SPECS
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•• Eliminate variables irrelevantEliminate variables irrelevant
to the validity of the propertyto the validity of the property

•• Remove unneeded detailRemove unneeded detail

THREE AUTOMATABLE
ABSTRACTION METHODS

Reset = On % Pressure , High # ¬Overridden

SafetyInjection

WaterPres

Overridden

Pressure

Reset

Block

ABSTRACTION METHOD 1:
REMOVE IRRELEVANT VARIABLES

SafetyInjection

WaterPres

Overridden

Pressure

Reset

Block

ABSTRACTION METHOD 2: USE 
EXISTING DATA ABSTRACTIONS 

assumed
 transducer

failure

Opening the vent valve shall be
prevented  unless the differential

pressure is within safe limits

ABSTRACTION METHOD 3:  
CREATE NEW DATA ABSTRACTIONS 

7.7 9.2 14.8 21.01.8 15.3

assumed
transducer

failure

minimum
allowable
for launch

maximum
allowable
for launch

I2I0 I1 I3 I4 I6I5
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STATE INVARIANTS

Definition of a state invariant:  a property that holds
     in every reachable state
     of a state machine model

Form of the state invariants 
that our algorithms generate

v = ai #  qi
v is any dependent
variable in the spec 

Mode invariants are a special case

M = mi #  qi M is a mode class 
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TWO ALGORITHMS FOR
CONSTRUCTING STATE INVARIANTS

APPLY
KEEP

SET OF STATE
INVARIANTS

SET OF (STRENGTHENED)
STATE INVARIANTS

APPLY
GROUP

Apply KEEP, a
fixpoint algorithm, 
to construct initial
set of invariants 

Use this set of 
invariants and
other information 
generated by 
KEEP in applying
GROUP 
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R o w Old Mode Event New Mode
1 Off @T(IgnOn) Inactive
2 Inactive @F(IgnOn) Off
3 Inactive @T(Lever=const) WHEN EngRunning Cruise

    AND NOT Brake
4 Cruise @F(IgnOn) Off
5 Cruise @F(EngRunning) Inactive
6 Cruise @T(Brake) OR @T(Lever=off) Override
7 Override @F(IgnOn) Off
8 Override @F(EngRunning) Inactive
9 Override @T(Lever=resume) WHEN NOT Brake OR Cruise

@T(Lever=const) WHEN NOT Brake

Exit Off
Enter Off

Initially:  M=Off  AND NOT IgnOn and NOT EngRunning

MODE TRANSITION TABLE 
FOR AUTOMOBILE CRUISE CONTROL

PROBLEM:  Find a mode invariant of mode Off
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BASIC RULE FOR GENERATING
MODE INVARIANTS

q is a mode invariant of mode m if
1) q is true upon entry into mode m  (q is also true initially if m is an initial

mode)
2) Occurrence of event @F(q) forces unconditional exit from m

Off

¬IgnOninitially

Cruise

Inactive
Override

@T(IgnOn)
Inactive

@F(IgnOn)

@F(IgnOn)
@F(IgnOn)

M = Off # ¬IgnOn

Applying the algorithm
when the mode M is Off

produces the invariant

BASIC RULE
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KEEP, AN ALGORITHM FOR
GENERATING MODE INVARIANTS

    Compute Mode Invariant
      

    Keep just the di found in C
       
REPEAT THESE THREE STEPS 
UNTIL A FIXPOINT IS REACHED

To strengthen invariant, use
• initial state predicate
• environmental constraints
• invariants computed on
  earlier passes

Compute Mode Entry Conditions:
C is the disjunction c1'c2'... 'cm 
of conditions true when mode 
entered

Compute Unconditional Exit Set:
 Set {d1,d2,...,dn} of simple Boolean 
 conditions whose falsification
 causes unconditional exit from mode

Jeffords and Heitmeyer,Jeffords and Heitmeyer, FSE98 FSE98
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APPLYING GROUP:
A SIMPLE EXAMPLE

s1

s3

s2A%B
initially @F@F((A)

@T@T((A)

@F@F((B) @F@F((B)

Applying KEEP, it is easy to show that
• A is an invariant of s1
• ¬ A is an invariant of s2
BUT KEEP does not produce any interesting
results about B
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APPLYING GROUP:
A SIMPLE EXAMPLE

Applying GROUP, we consider sets of states
 If we consider the set of states G = {s1, s2}
• The uncond. exit set of G is B
•  The mode entry condition of G is A%B
•  Hence B is an invariant of s1 and s2

s1

s3

s2A%B
initially @F@F((A)

@T@T((A)

@F@F((B) @F@F((B)
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INVARIANTS CONSTRUCTED BY KEEP

APPLY
KEEP

SET OF STATE
INVARIANTS

M=Off # ¬IgnOn
M =Cruise #  ¬Brake % Lever !  Off
M =Override # true
M =Inactive #  true
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GROUP STRENGTHENS
INVARIANTS CONSTRUCTED BY KEEP

APPLY
KEEP

SET OF STATE
INVARIANTS

SET OF (STRENGTHENED)
STATE INVARIANTS

APPLY
GROUP

M=Off # ¬IgnOn
M =Cruise #  ¬Brake % Lever !  Off
M =Override # true
M =Inactive #  true

M=Off # ¬IgnOn
M =Cruise #  ¬Brake % Lever !  Off % IgnOn % -ngRunning
M =Override #  IgnOn % -ngRunning
M =Inactive #  IgnOn



APPLYING THE SCR
TOOLS IN PRACTICE


