Requirements Models for
System Safety and Security

Connie Heitmeyer
Naval Research Laboratory

Washington, DC 20375
heitmeyer@itd.nrl.navy.mil

International Summer School
Marktoberdorf
August 2010

BEHAVIORS (POSSIBLE VS.
ACCEPTABLE) AND PROPERTIES

All
behaviors
satisfying

property p
All

behaviors

NAT: All possible behaviors satisfying natural laws,
constraints on the system env

REQ: All acceptable system behaviors

SOFT: All acceptable software behaviors

23.08.2010 2

OVERVIEW

* Introduction to the Requirements Problem
« Four Variable Model and SCR

— — Formal Requirements Model
— > —Tools for Analyzing Requirements Models
— Applying the Tools to Practical Systems

 Verifying Source Code for Security Properties: A
Practical Application

« An incremental, model-based method for developing
critical software

— Example applying the method to fault-tolerance

23.08.2010

SCR REQUIREMENTS
MODEL

WHAT QUESTIONS DOES THE
SCR MODEL ADDRESS?

- What units of discourse are useful in specifying
the required software system behavior?

—Monitored & controlled variables, terms, and modes
— Conditions and events

- How are system outputs (i.e., controlled vars)
represented as mathematical functions?

— Role of terms and modes
— Semantics of SCR tabular format

- How can the required behavior of a system be
represented as a state machine?

23.08.2010 s

DEFINITIONS: VARIABLES,
TYPES, AND SYSTEM STATE

We assume the existence of a number of sets including

- RFis the set of state variable names

— RFis partitioned into sets of mode class names, monitored
variable names, term names, and controlled variable names

- TSis a union of fypes, where each type is a nonempty
set of values

- Forall rin RF, TY(r) € TSis the range type of r

— TY(r) is the set of possible values of r

A system state S is a function that maps each
state variable name rin RFto a value in TY(r)

23.08.2010 6

DEFINITION:
SYSTEM

A software system is a state machine whose transitions from one state to
the next are triggered by monitored events. Formally, a software system
> is a 4-tuple ¥ = (E™, S, Sy, T), where

e """ is the set of possible monitored events,
e S is the set of possible system states,

e 5) C S is the set of initial states, and

e T is the system transform/ a partial function from E"* x S into S| T
is a partial function because not all monitored events are eligible to
occur 1n a given state.

Note: Our state machine model is NOT a Mealy machine
— the system outputs (i.e., controlled vars) are

included in the state

23.08.2010 7

EXAMPLE MODEL: CONTROL SYSTEM
FOR SAFETY INJECTION (3)

« Mode Class Pressure - abstraction of WaterPres

« Term Overridden - denotes whether operator has
overridden injection

« Controlled variable Safetylnjection - defined in
terms of terms, modes, and monitored variables

[Pressure Overridden Low

TooLow Hih Permit
Mode) 'S T*
Class Term Constants

Permitted

\

Safety

WaterPres)) Injection
@ ock Safety Injection System
- L

23.08.2010 8

EXAMPLE: SYSTEM STATE

The example control system contains the following sets:

Set of monitored variables: {Block, Reset, WaterPres}
Set of controlled variables: {Safetylnjection}
{Overridden}

Set of terms:

Set of mode classes:

{Pressure}

Type definitions associated with these sets are
TY(WaterPres) = {1, 2, ..., 2000}
TY(Safetylnjection = {On, Off}
TY(Block) = TY(Reset) ={On, Off}
TY(Overridden) = {true, false}
TY(Pressure) = {TooLow, Permitted, High}

variable . o
name { WaterPres Block Reset Pressure Overridden Safetylnjection
variable { 850 | Off | On |Toolow| false Off
value
Example of a System State
23.08.2010
Concept Syntax Semantics Evaluation
simple condition |Reset=0ff; Reset=0ff; truein s and s’
WaterPres<900 WaterPres<900 trueins, falsein s’
condition Reset=0Off AND Reset=0ff AND truein s, falsein s’
WaterPres<900 WaterPres<900
Reset=0Off OR Reset=0Off OR trueinsand s’
WaterPres<900 WaterPres<900
— | primitive event |@T(WaterPres=900) | WaterPres=900 AND {rue in (s, s")
WaterPres'=900
@T(Reset=0ff) Reset= Off & falsein (s, s’)
Reset’=Off
— | conditioned event|@T(WaterPres=900) | WaterPres=9 00 AND ftrue in (s, s')
WHEN Reset=0ff| WaterPres'=900 AND
Reset=0ff

states

23.08.2010

Reset=0Off
WaterPres=25

Reset=0Off

Reset=0Off
WaterPres=900

DENOTING FUNCTIONS
USING TABLES

Advantages of a tabular notation

 Less error-prone than, e.g., logic notation
— Structure provided by tables eliminates whole classes of errors

« More scalable than many other notations

— For example, graphic notations, such as finite state diagrams,
do not scale well to practical applications

» The labels on the transitions are often too long
» Not practical when the number of states is large

23.08.2010

EXAMPLE OF A
CONDITION TABLE

Mode Pressure Condition
High, Permitted True False
TooLow Overridden NOT Overridden
Safetylnjection = Off On
Based on the new state dependencies set D, = {Pressure, Overridden} and

the above condition table, the function F5 defining the value of the controlled
variable rg = SafetyInjection is defined by

SafetyInjection =
Off if Pressure=High V Pressure=Permitted V
(Pressure = TooLow A Overridden = frue)

Fy(Pressure, Overridden) =
On if Pressure = TooLow A Overridden = false

The table defines Safetylnjection as a function of a single state.

23.08.201

CONDITION TABLE:
FORMAL DEFINITION

Mode Condition
no ambiguity mi e fen] ey
no missing cases
My Cnl|Cn2 * 1 Cnp
i (1 V2 e ’Up

Each condition table describes the value of a controlled variable or term r; as a relation p;
on modes, conditions, and values:

pi = {(mj,ijk,’Uk) S M,u(i) X Ci X TY(T‘Z)}

The relation p; must satisfy the following properties:

1. The m; are unique; the vy, are unique.

2. Uj_y mj = TY(u(i)) (All modes in the associated mode class are included).

Ly 3. Forall j: Vi_;¢jr = true (Coverage: The disjunction of the conditions in each row of
the table is true).

—> 4. Forall j,k, 1, k #l: ¢jr N\ cjy = false (Disjointness: The pairwise conjunction of the
conditions in each row of the table is always false).

These four properties guarantee that the function is total

23.08.2010

EXAMPLE OF AN EVENT TABLE @&

Mode Pressure Event
High Never @F (Pressure = High)
TooLow, @T(Block = On) @T(Pressure = High) OR
Permitted WHEN Reset = Off @T(Reset = On)
Overridden’ = True False

Based on the above event table and the new state and old state dependencies sets, {Block,
Reset, Pressure, Overridden} and {Block, Reset Pressure}. the function defining
the value of Overridden. denoted F3, is described by

Overridden’ = F;(Pressure, Block, Reset,Overridden, Pressure’, Block’,Reset’'} =

true if |(Block' =0n A Block = 0ff A Pressure = TooLow A |
Reset = 0ff) |V (Block’ = 0n A Block = 0ff A
Pressure = Permitted A Reset = 0ff)
false if (Reset’ = 0On A Reset = 0ff A Pressure = TooLow) V
no (Reset’ = On A Reset = 0ff A Pressure = Permitted) V
change (Pressure’ = High A Pressure # High) V »
((Pressure’=Permitted V Pressure’=TooLow) A
\4 —(Pressure=Permitted V Pressure=TooLow))
Overridden utlwrwisvl

Defines Overridden as a function of two states
23.08.2010

EVENT TABLE:
FORMAL DEFINITION

no missing cases Mode Event
my €11(€12| " |€1p
no ambiguity My | €nt|€n2| |enp
T (R R

Each event table describes the value of a controlled variable or term r; as a relation p; on

modes, events, and values:
pi = {(mj,ej’k,vk) c M,u(i) X Ei X TY(T’i)}.
The relation p; must satisfy the following properties:

1. The m; are unique; the vy, are unique.

—»2. Forall j, k1, kK #1:ejr Aej; = false (Disjointness: The pairwise conjunction of the
events in each row of the table is always false).
The One Input Assumption (only one monitored event occurs at a time) and the two
properties above guarantee that Fj is a function.l The “no-change” part of Fj’s deﬁnitionl
| guarantees totality. |

23.08.2010

EXAMPLE OF A ¥
MODE TRANSITION TABLE

Old Mode | Event | New Mode
TooLow ' @T(WaterPres > Low) ' Permitted
Permitted | @T(WaterPres > Permit) ‘ High
Permitted ' @T(WaterPres < Low) ' TooLow
High A @T(WaterPres < Permit) . Permitted

Based on the above mode transition table and the old and new dependencies sets
{WaterPres, Pressure} and {WaterPres}, the function defining the value of
Pressure, denoted F,, is described by

No
transitions TooLow if Pressure = Permitted A WaterPres’' < Low A
\ WaterPres ¢ Low

pOSS|bIe from High if Pressure = Permitted A WaterPres' > Permit A

TooLow to WaterPres 7 Permit

ngh and vice Permitted if (Pressure = Toolfow A WaterPres' > Low A
WaterPres # Low) V

versa (Pressure = High A WaterPres' < Permit A
WaterPres # Permit)

\ Pressure otherwise.

NAT: Pressure = TooLow = Pressure’ € {TooLow, Permitted} A ...

1

23.08.4

MODE TRANSITION TABLE:
DEFINITION

.ge C t Mod Event New Mod

A mode transition trrent Yoce ven ew Mode
. . my €11 mi

table with this format

which satisfies the CLhy My
. . my €21 ma
four properties is a
special case of an ez Mok,
event table. - =
n n,1 mp1

En.ky My, k,

A mode transition table describes a mode class r; as a relation p; on modes, conditioned events, and modes. It is
defined by
pi = {(my, ejr,mjp) € My x Ei x My}

where FEj is the set comprised of “never” and conditioned events defined on the variables in RF, and each ¢; ;. is
an event (or “never”) in a row containing mode m; and a column containing value vy,.
The relation p; has the following properties:

1. The m; are unique.

2. Forall k # 1, mj. # mj.

3. For all j and for all k, m; # m;; (No Self-Loops).

4.Forall j,k,l, k # l: ejx A ej; = false (Disjointness: The pairwise conjunction of the conditioned events in

each row of the table is always false).
23.08.2010 K

PARTIAL ORDERING
OF THE VARIABLES

- Based on their dependencies, the state variables may
be partially ordered.

— Each monitored variable is independent of any other
variable, including other monitored variables

— Each mode class can only depend on the monitored
variables, the mode classes and terms preceding it in the
partially order, and similarly each term ...

— Each controlled variable can depend on the monitored
variables, mode classes, terms, and any controlled variables
that precede it in the partial order

« Thus the variables in RF can be ordered as a
sequence R, a topological sort of RF, based on their
dependencies

23.08.2010 18

DEPENDENCIES
AMONG THE VARIABLES

Monitored Vars MODES & TERMS Controlled Vars

‘lllilEEHEIII" T

Level 1 Level 2 Level 3 Level 4

Safetylnjection

Overridden

23.08.2010 19

TRANSFORM FUNCTION

The system transform T is defined using a series of value functions V; and a series of partial
states z;. The partial states z; are defined by

0 fori =1
zi1 U {[:'1'1_1. V,_][(S))} fori=23,..., P+1.

ot |

The complete new state zp-; is computed by computing each z; in turn.
If r; is a monitored variable, the value function V; is defined by
v ifr;=r

Vile,s) =1, | .
e s(r;) otherwise.

If r; is defined by a condition table function F}, the value function V; is defined by

Vile,s) = F,

1.2i 1

where F; .. denotes the evaluation of the single-state function F; in partial state z;.

If 7; is defined by an event table function F}, the value function V; is defined by
Vile,s) = Fi, -, .

where Fj , . denotes the evaluation of the two-state function F; in state s and partial state z;.

The system transform T is defined by the (P + 1)st partial state. That is, T'(¢, s) = zp.;.
23.08.201 20

GUARANTEED PROPERTIES
OF THE TRANSFORM T

Lack of circularity and the conditions that the
tables must satisfy guarantee important
properties of the transform T:

1. Tis complete: For each monitored event that may

occur, at least one new system state is completely
defined

2. T is deterministic: For each monitored event that
may occur, at most one new system state is defined

23.08.2010 2

REQUIREMENTS
TOOLSET

AUTOMATICALLY
GENERATING INVARIANTS

' PROBLEM IN AUXILIARY

. THEOREM PROVING /NVARIANTS - | e

; } »How to obtain ’rhese??i
Machine X is an invariant

+ Proving p invariant often fails without the aid of auxiliary
invariants

+ Major difficulty: Finding strong enough auxiliary invariants
so that the proof succeeds

ONE SOLUTION
Automatically construct state invariants from specs

23.08.2010 2z

SCR GOAL: MAKE ‘FORMAL
METHODS’ PRACTICAL

SPECIFY) Scalable tabular notation

THE SYSTEM Integrated s<_at of software tools
PRECISELY |—— — light-weight tools (easy to use)
— heavy-duty tools (e.g., theorem prover)
Usea TABULAR | 1\?SPIE?IZZNCY
nota.tzc-m with an CHECKING”
explicit formal 4@1/\/
semantics to Automatically A S,
specify the check spec for SIMULATE
required syntax/type errors, THE
behavior missing cases, SYSTEM 1
nf)nd?terzums? BEHAVIOR VERIFY
circular defs, ete. "o b hically SPECS USING
P ToTTommTomosooosooooooooooooes ! execute the MODEL CHECKING
| As we move down the ! system based
' chain, we increase on the Check Y
' assurance in the spec ! (executable) critical VERIFY
-------------------------------------- ! req. specs application SPECS USING
properties |THEOREM PROVING

23.08.2010 24

AN SCR REQUIREMENTS SPEC:
A COLLECTION OF TABLES

types,
initial values,
and other \\
var info

VARIABLE ~ CONSTANT
DICTIONARY DICTIONARY ASSERTIONS
. — DICTIONARY
user-defined L] !
types \\ ---------------------- E.g., security
TABLES DEFINING and safety
THE DEPENDENT properties
VARIABLES
TYPE SSUMPTIONS
DICTIONARY | DICTIONARY Defines
NAT constraints / REIQ Desired
Properties

Defines the Requirements Model

23.08.2010 %

by (@ :

Ty

CONSISTENCY CHECKING

« Checks well-formedness of the spec
— Does the spec satisfy the formal model?
— CC checks spec for application-independent
properties, including properties required of the tables
— Is the spec syntax-correct, type-correct, ...?

 Analyzing Disjointness and Coverage

— Check that certain logical formulas defined on
conditions and events are tautologies; e.g., given a
condition table

Disjointness: Check that the entries ¢, and ¢, in
each pair of cells in each row satisfy|c; A ¢, = false
Coverage: Check that the entries in each row satisfy
C;V C,V -V, =true

23.08.2010 26

USING THE SIMULATOR
FOR VALIDATION

Simulator Display

Simulator Log

[

BombReleaseDemoSub.seed : Simulator

Help |

BombReleaseDemoSub.seed : Simulator Log

Log Edit Tools Help

Backup

HissDistance =
ReleaseEnable =
MWeaponType =
ReleaseEnable =
MasterFenSwitch = | none
L AChirborne = [no

Restart

“Executed”

:0 \ Next

Event

=]

Events

Simulator Control Log Tools
ﬁllunitored variables: Modeclasses: Controlled Variables: Monitored Variables Dependent Variables
ACAirbe = |yes B Weapons = Nattack AN BombRelease = off AN
o ?rne = iy ACAirborne = no BonbRelease = off
ﬂw‘.‘ﬁh_:_l na MasterFenSwitch = none ReadyStn = FALSE
HissDistance = | 1000 vi HissDistance = 1000 Weapons = None
= Overflown = 0
| Overflown =0 = = ReleaseEnable = off
ReleaseEnable = | off StniReady = no
StniReady = | yes 4 StnBReady = no
= Jerms T System TargetDesig = FALSE
StrBReady = | no ReadyStn = TRUE A leaponType = 0
TargetDesig = | FALSE S 5
= J tate ACAirborne = yes
\ NeagonTg.Ee = |50 g
--- State 2
MasterFenSwitch = natt
| [— | = N 1 = | [—— - --- State 3
e StnlReady = yes o
TR Fending Events: . eaponType = 50 Readystn = TRUE
Ay Weapons = Nattack
TargetDesig = TRUE
T --- State B
HissDictance = 16

ReleaseEnable = on

BombRelease = on I

WeaponType = 0

ReadyStn = FALSE

ACAirborne = no

--- State 9

ReleaseEnable = off BombRelease = off
--- State 10

MasterFenSwitch = none Weapons = None
--- State 11

23.08.2010

CHECKING ASSERTIONS
WITH THE SIMULATOR

Monitored Vars Dependent Va2r7s

ey G (ep e m

Monitored Variables:

At step 4, the

Modeclasses:

ub.seed :

Controlled Variables:

Simulator Display

Simulator Log

AChirborne = | yes N Weapons = Nattack ﬁ | BombReleass = on Al
simu |ato r HasterFonSuitoh = | natt —
MissDistance = | 10
Overflown = | 0
has detected e
StniReady = | yes Terms: Monitored Variables Dependent Variables
StnBReady = = --- Start State -- -
a violation of Lommen eongn = TE | [o5 S S
| Targetlesig = | MasterFenSuitch = none ReadyStn = FALSE
. MeaponType = | 50 MissDistance = 1000 Weapons = None
an assertion
. = off
5] - =] | |StniReady = no

P

Clicking

on the warning
msg. in the log
highlights the
failed assertion.

ReleaseEnable = |on
MWeaponType = | 0
ReleaseEnable = | off
MasterFenSwitch = | none
[#CAirhorne = | no

TaraetDeslg = FRLSE
WeaponTupe = 0
-—- State 1
ACAirborne = yes
--- State 2
Master‘FcnSwltch = natt

StaneadH = yes

eapnnTupe =50 ReadyStn = TRUE

Heapans = Nattack

Stati
etDesig = TRUE
--- State B

23.08.2010

[
Dictionary

Edit Tools

BombReleaseDemoSub.seed : Assertion Dictionary

Help

Assertion

Comment,

Dictionary

D/E? | Expression
Name

ReleaseOK E

BonbRelease = on => ReleaseEnable = on

The aircraft shouldn’t drop a bonb
unless the pilot has pressed release
enable.

!

Lo

ASSERTION: BombRelease = on = ReleaseEnable = on

28

A FRONT END FOR THE SIMULATOR g«

Cockplt 18 1

own: 0 nmi

I_J_l,,)., SRR Restart | Close I

WeaponType

MODEL CHECKING SCR SPECS

State machine X Abstract machine
state space S state space S,
initial state predicate © initial state predicate © ,
next-state relation p next-state relation p,

a:S—=>S,

abstraction mapping
property q property q,
- Given a property q, we want the following to hold:

—da is an invariant of £, implies that q is an invariant of X (soundness)
— q is an invariant of X if q, is an invariant of =, (compleleness)
(thus, a counterexample to q, is found in 2, implies q is not an invariant of X)
- Two kinds of invariants of interest «— ALWAYS PROPERTIES

— properties of each reachable state (state invariants)
— properties of each pair of reachable states in relation p (transition invariants)

NEXTIME PROPERTIES

23.08.2010 30

THREE AUTOMATABLE
ABSTRACTION METHODS

Reset = On A Pressure = High = —Overridden Opening the vent valve shall be
prevented unless the differential
ABSTRACTION METHOD 1: pressure is within safe limits
REMOVE IRRELEVANT VARIABLES
_, ABSTRACTION METHOD 3:
\ CREATE NEW DATA ABSTRACTIONS
- AN | 18 7792 148 153 210
./V I I
<> - 3 3
assumed minimum maximum assumed
transducer allowable allowable transducer
ABSTRACTION METHOD 2: USE failure for launch for launch failure

EXISTING DATA ABSTRACTIONS

23.08.2010 81

* Eliminate variables irrelevant

: to the validity of the property
* Remove unneeded detail

STATE INVARIANTS

Definition of a state invariant: a property that holds
in every reachable state
of a state machine model

Form of the state invariants
that our algorithms generate

v is any dependent

v=a,= q,
: 9 variable in the spec

Mode invariants are a special case

M =m,= q; M is a mode class

23.08.2010 32

TWO ALGORITHMS FOR

CONSTRUCTING STATE INVARIANTS :‘
Apply KEEP, a

P : APPLY
fixpoint algorithm, KEEP
to construct initial

set of invariants

SET OF STATE
INVARIANTS

Use this set of
invariants and
other information
generated by
KEEP in applying

GROUP SET OF (STRENGTHENED)
STATE INVARIANTS

23.08.2010 3

MODE TRANSITION TABLE
FOR AUTOMOBILE CRUISE CONTROL

Row| Old Mode Event New Mode
—> 1 Off @T(IgnOn) Inactive
— 2 Inactive |@F(IgnOn) Off
3 Inactive |@T(Lever=const) WHEN EngRunning Cruise
AND NOT Brake
—> 4 Cruise @F(IgnOn) Off
5 Cruise @F(EngRunning) Inactive
6 Cruise @T(Brake) OR @T(Lever=0ff) Override
— 7 Override |@F(IgnOn) Off
8 Override |@F(EngRunning) Inactive
9 Override |@T(Lever=resume) WHEN NOT Brake OR Cruise
@T(Lever=const) WHEN NOT Brake
Initially: M=Off :AND NOT IgnOn and NOT EngRunning
—> Exit Off

~+ nteroff | PROBLEM: Find a mode invariant of mode Off

23.08.2010 34

BASIC RULE FOR GENERATING
MODE INVARIANTS

BASIC RULE

g is a mode invariant of mode m if

1) gis true upon entry into mode m (q is also true initially if m is an initial

mode)
2) Occurrence of event @F(q) forces unconditional exit from m

initially &n()n

@T(IgnOn
WO, Fnactive>

Applying the algorithm
when the mode M is Off

®F(IgnOn) produces the invariant

@F(IgnOn)
M =0ff = —7IgnOn

23.08.2010

@F(IgnOn)

KEEP, AN ALGORITHM FOR
GENERATING MODE INVARIANTS

Compute Mode Entry Conditions: | |Compute Unconditional Exit Set:
C is the disjunction ¢qve,v... vey, | | Set {d4,d,,...,d,} of simple Boolean

of conditions true when mode conditions whose falsification
entered causes unconditional exit from mode
To strengthen invariant, use l i

* initial state predicate Compute Mode Invariant

» environmental constraints
* invariants computed on Keep just the di found in C

earlier passes
REPEAT THESE THREE STEPS
UNTIL A FIXPOINT IS REACHED

Jeffords and Heitmeyer, FSE98

23.08.2010 36

APPLYING GROUP:
A SIMPLE EXAMPLE

initially eF(Aa)

AAB

QF(B) @F(B)

Applying KEEP, it is easy to show that

* Ais an invariant of s,
® 71 Ais an invariant of s,

BUT KEEP does not produce any interesting
results about B

23.08.2010 ¥

APPLYING GROUP:
A SIMPLE EXAMPLE v

by (@ :

Applying GROUP, we consider sets of states
If we consider the set of states G = {s,, s,}

* The uncond. exit set of G1s B

* The mode entry condition of G is AAB

* Hence B is an invariant of s; and s,

23.08.2010 38

INVARIANTS CONSTRUCTED BY KEEP

APPLY
KEEP

M=0ff = —IgnOn

M =Cruise = -Brake A Lever # Off
M =Override = true

M =Inactive = true

23.08.2010 39

GROUP STRENGTHENS
INVARIANTS CONSTRUCTED BY KEEP

APPLY
KEEP

M=0Off = —IgnOn

M =Cruise = -Brake A Lever # Off
M =Override = true

M =Inactive = true

APPLY
GROUP

M=0ff = —IgnOn
M =Cruise = -Brake A Lever # Off A [gnOn A EngRunning
M =Override = IgnOn A EngRunning

M =Inactive = IgnOn

23.08.2010 40

APPLYING THE SCR
TOOLS IN PRACTICE

