

Requirements Models forRequirements Models for
System Safety and SecuritySystem Safety and Security

Connie HeitmeyerConnie Heitmeyer
Naval Research LaboratoryNaval Research Laboratory

Washington, DC 20375Washington, DC 20375
heitmeyer@itd.nrl.navy.milheitmeyer@itd.nrl.navy.mil

International Summer School
Marktoberdorf
August 2010

223.08.2010

NAT: All possible behaviors satisfying natural laws,
constraints on the system env
REQ: All acceptable system behaviors
SOFT: All acceptable software behaviors

BEHAVIORS (POSSIBLE VS.
ACCEPTABLE) AND PROPERTIES

All
behaviors

NAT

All
behaviors
satisfying
property p

REQ SOFT

323.08.2010

OVERVIEW

• Introduction to the Requirements Problem
• Four Variable Model and SCR

– Formal Requirements Model
– Tools for Analyzing Requirements Models
– Applying the Tools to Practical Systems

• Verifying Source Code for Security Properties: A
Practical Application

• An incremental, model-based method for developing
critical software

– Example applying the method to fault-tolerance

SCR REQUIREMENTS
MODEL

523.08.2010

WHAT QUESTIONS DOES THE
SCR MODEL ADDRESS?

• What units of discourse are useful in specifying
the required software system behavior?

– Monitored & controlled variables, terms, and modes
– Conditions and events

• How are system outputs (i.e., controlled vars)
represented as mathematical functions?

– Role of terms and modes
– Semantics of SCR tabular format

• How can the required behavior of a system be
represented as a state machine?

623.08.2010

We assume the existence of a number of sets including
• RF is the set of state variable names

– RF is partitioned into sets of mode class names, monitored
variable names, term names, and controlled variable names

• TS is a union of types, where each type is a nonempty
set of values

• For all r in RF, TY(r) ! TS is the range type of r
– TY(r) is the set of possible values of r

DEFINITIONS: VARIABLES,
TYPES, AND SYSTEM STATE

A system state s is a function that maps each
state variable name r in RF to a value in TY(r)

723.08.2010

DEFINITION:
SYSTEM

Note: Our state machine model is NOT a Mealy machine
 " the system outputs (i.e., controlled vars) are
 included in the state

823.08.2010

• Mode Class Pressure - abstraction of WaterPres
• Term Overridden - denotes whether operator has

overridden injection
• Controlled variable SafetyInjection - defined in

terms of terms, modes, and monitored variables

EXAMPLE MODEL: CONTROL SYSTEM
FOR SAFETY INJECTION (3)

Safety Injection SystemEnvironment
WaterPres

Block
Reset

Safety
Injection

Environment

Pressure
TooLow High

Permitted

Mode
Class

Overridden

TermTerm

Low
Permit

ConstantsConstants

923.08.2010

EXAMPLE: SYSTEM STATE

The example control system contains the following sets:
Set of monitored variables: {Block, Reset, WaterPres}
Set of controlled variables: {SafetyInjection}
Set of terms: {Overridden}
Set of mode classes: {Pressure}

Type definitions associated with these sets are
 TY(WaterPres) = {1, 2, ..., 2000}
 TY(SafetyInjection = {On, Off}
 TY(Block) = TY(Reset) = {On, Off}
 TY(Overridden) = {true, false}
 TY(Pressure) = {TooLow, Permitted, High}

WaterPres Block Reset Pressure Overridden SafetyInjection

850 Off On TooLow false Off

Example of a System State

variable
name

variable
value {

{

1023.08.2010

EXAMPLES:
CONDITIONS AND EVENTS

states ...
s0 s’s

Reset=Off Reset=Off
WaterPres=899 WaterPres=900

Reset=Off
WaterPres=25

simple condition Reset=Off; Reset=Off; true in s and s’

WaterPres<900 WaterPres<900 true in s, false in s’
condition Reset=Off AND Reset=Off AND true in s, false in s’

WaterPres<900 WaterPres<900
 Reset=Off OR Reset=Off OR true in s and s’

 WaterPres<900 WaterPres<900
primitive event @T(WaterPres=900) WaterPres≠9 00 AND true in (s, s’)

 WaterPres’=900
@T(Reset=Off) Reset≠Off & false in (s, s’)
 Reset’=Off

conditioned event @T(WaterPres=900) WaterPres≠9 00 AND true in (s, s’)
 WHEN Reset=Off WaterPres’=900 AND
 Reset=Off

EvaluationConcept Syntax Semantics

1123.08.2010

DENOTING FUNCTIONS
USING TABLES

Advantages of a tabular notation
• Less error-prone than, e.g., logic notation

– Structure provided by tables eliminates whole classes of errors
• More scalable than many other notations

– For example, graphic notations, such as finite state diagrams,
do not scale well to practical applications

» The labels on the transitions are often too long
» Not practical when the number of states is large

1223.08.2010

EXAMPLE OF A
CONDITION TABLE

Mode Pressure Condition

High, Permitted True False

TooLow Overridden NOT Overridden

SafetyInjection = Off On

The table defines SafetyInjection as a function of a single state.

1323.08.2010

CONDITION TABLE:
FORMAL DEFINITION

no missing cases
no ambiguity

These four properties guarantee that the function is total

1423.08.2010

EXAMPLE OF AN EVENT TABLE

Mode Pressure Event

High Never @F(Pressure = High)

TooLow,
Permitted

@T(Block = On)
 WHEN Reset = Off

@T(Pressure = High) OR
@T(Reset = On)

Overridden’ = True False

no
change

Defines Overridden as a function of two states

1523.08.2010

EVENT TABLE:
FORMAL DEFINITION

no ambiguity

no missing cases

1623.08.2010

EXAMPLE OF A
MODE TRANSITION TABLE

Based on the above mode transition table and the old and new dependencies sets
{WaterPres, Pressure} and {WaterPres}, the function defining the value of
Pressure, denoted F4, is described by

NAT: Pressure = TooLow # Pressure’ $ {TooLow, Permitted} % …

No
transitions
possible from
TooLow to
High and vice
versa

1723.08.2010

MODE TRANSITION TABLE:
DEFINITION

A mode transition
table with this format
which satisfies the
four properties is a
special case of an
event table.

1823.08.2010

• Based on their dependencies, the state variables may
be partially ordered.

– Each monitored variable is independent of any other
variable, including other monitored variables

– Each mode class can only depend on the monitored
variables, the mode classes and terms preceding it in the
partially order, and similarly each term …

– Each controlled variable can depend on the monitored
variables, mode classes, terms, and any controlled variables
that precede it in the partial order

• Thus the variables in RF can be ordered as a
sequence R, a topological sort of RF, based on their
dependencies

PARTIAL ORDERING
OF THE VARIABLES

1923.08.2010

DEPENDENCIES
AMONG THE VARIABLES

SafetyInjection

WaterPres

Overridden

Pressure

Reset

Monitored Vars MODES & TERMS

Level 1 Level 3Level 2 Level 4

Block

Controlled Vars

2023.08.2010

TRANSFORM FUNCTION

2123.08.2010

GUARANTEED PROPERTIES
OF THE TRANSFORM T

Lack of circularity and the conditions that the
tables must satisfy guarantee important
properties of the transform T:

1. T is complete: For each monitored event that may
occur, at least one new system state is completely
defined

2. T is deterministic: For each monitored event that
may occur, at most one new system state is defined

REQUIREMENTS
TOOLSET

2323.08.2010

• Proving p invariant often fails without the aid of auxiliary
invariants

• Major difficulty: Finding strong enough auxiliary invariants
so that the proof succeeds

State
Machine &

Property p
is an invariant

THEOREM
PROVER

AUTOMATICALLY
GENERATING INVARIANTS

AUXILIARY
INVARIANTS

Automatically construct state invariants from specs

PROBLEM IN
THEOREM PROVING

ONE SOLUTION

How to obtain these??

2423.08.2010

SPECIFY
THE SYSTEM
PRECISELY

Use a TABULARTABULAR
notation with an
explicit formal
semantics to
specify the
required
behavior

APPLY
“CONSISTENCY

CHECKING”

Automatically
check spec for
syntax/type errors,
missing cases,
nondeterminism,
circular defs, etc.

SIMULATE
THE

SYSTEM
BEHAVIOR

Symbolically
execute the
system based
on the
(executable)
req. specs

SCRSCR GOAL: MAKE ʻFORMAL
METHODSʼ PRACTICAL

As we move down the
chain, we increase
assurance in the spec

INCREASING EFFORT,

INCREASED EXPERTISE

VERIFY
SPECS USING

THEOREM PROVING

VERIFY
SPECS USING

MODEL CHECKING
Check
critical
application
properties

• Scalable tabular notation
• Integrated set of software tools

– light-weight tools (easy to use)
– heavy-duty tools (e.g., theorem prover)

2523.08.2010

AN SCR REQUIREMENTS SPEC:
A COLLECTION OF TABLES

TYPE
DICTIONARY

user-defined
types

VARIABLE
DICTIONARY

CONSTANT
DICTIONARY

types,
initial values,

and other
var info

TABLES DEFINING
THE DEPENDENT

VARIABLES

REQ

Defines the Requirements Model

ASSUMPTIONS
DICTIONARY

NAT constraints

ASSERTIONS
DICTIONARY
E.g., security
and safety
properties

Defines
Desired

Properties

2623.08.2010

CONSISTENCY CHECKING
• Checks well-formedness of the spec

– Does the spec satisfy the formal model?
– CC checks spec for application-independent

properties, including properties required of the tables
– Is the spec syntax-correct, type-correct, …?

• Analyzing Disjointness and Coverage
– Check that certain logical formulas defined on

conditions and events are tautologies; e.g., given a
condition table
Disjointness: Check that the entries c1 and c2 in
each pair of cells in each row satisfy c1 % c2 = false
Coverage: Check that the entries in each row satisfy
c1 ' c2 ' ... ' cn = true

2723.08.2010

Next
Event

“Executed”
Events

USING THE SIMULATOR
FOR VALIDATION

System
State

Simulator Display

Dependent VarsMonitored Vars

Simulator Log

2823.08.2010

CHECKING ASSERTIONS
WITH THE SIMULATOR

Simulator Display

Simulator Log

Assertion
Dictionary

At step 4, the
simulator
has detected
a violation of
an assertion.
Clicking
on the warning
msg. in the log
highlights the
failed assertion.

ASSERTION: BombRelease = on # ReleaseEnable = on

A FRONT-END FOR THE SIMULATOR

3023.08.2010

State machine &
 state space S
 initial state predicate (
 next-state relation)

Abstract machine &*
 state space S*
 initial state predicate (*
 next-state relation)*

SS
SS**

+ : S " S*

• Given a property q, we want the following to hold:
– q* is an invariant of &* implies that q is an invariant of & (soundness)
– q is an invariant of & if qA is an invariant of &* (completeness)

 (thus, a counterexample to qA is found in &* implies q is not an invariant of &)
• Two kinds of invariants of interest

– properties of each reachable state (state invariants)
– properties of each pair of reachable states in relation) (transition invariants)

abstraction mapping
property q property qA

ALWAYS PROPERTIES

NEXTIME PROPERTIES

MODEL CHECKING SCR SPECS

3123.08.2010

•• Eliminate variables irrelevantEliminate variables irrelevant
to the validity of the propertyto the validity of the property

•• Remove unneeded detailRemove unneeded detail

THREE AUTOMATABLE
ABSTRACTION METHODS

Reset = On % Pressure , High # ¬Overridden

SafetyInjection

WaterPres

Overridden

Pressure

Reset

Block

ABSTRACTION METHOD 1:
REMOVE IRRELEVANT VARIABLES

SafetyInjection

WaterPres

Overridden

Pressure

Reset

Block

ABSTRACTION METHOD 2: USE
EXISTING DATA ABSTRACTIONS

assumed
 transducer

failure

Opening the vent valve shall be
prevented unless the differential

pressure is within safe limits

ABSTRACTION METHOD 3:
CREATE NEW DATA ABSTRACTIONS

7.7 9.2 14.8 21.01.8 15.3

assumed
transducer

failure

minimum
allowable
for launch

maximum
allowable
for launch

I2I0 I1 I3 I4 I6I5

3223.08.2010

STATE INVARIANTS

Definition of a state invariant: a property that holds
 in every reachable state
 of a state machine model

Form of the state invariants
that our algorithms generate

v = ai # qi
v is any dependent
variable in the spec

Mode invariants are a special case

M = mi # qi M is a mode class

3323.08.2010

TWO ALGORITHMS FOR
CONSTRUCTING STATE INVARIANTS

APPLY
KEEP

SET OF STATE
INVARIANTS

SET OF (STRENGTHENED)
STATE INVARIANTS

APPLY
GROUP

Apply KEEP, a
fixpoint algorithm,
to construct initial
set of invariants

Use this set of
invariants and
other information
generated by
KEEP in applying
GROUP

3423.08.2010

R o w Old Mode Event New Mode
1 Off @T(IgnOn) Inactive
2 Inactive @F(IgnOn) Off
3 Inactive @T(Lever=const) WHEN EngRunning Cruise

 AND NOT Brake
4 Cruise @F(IgnOn) Off
5 Cruise @F(EngRunning) Inactive
6 Cruise @T(Brake) OR @T(Lever=off) Override
7 Override @F(IgnOn) Off
8 Override @F(EngRunning) Inactive
9 Override @T(Lever=resume) WHEN NOT Brake OR Cruise

@T(Lever=const) WHEN NOT Brake

Exit Off
Enter Off

Initially: M=Off AND NOT IgnOn and NOT EngRunning

MODE TRANSITION TABLE
FOR AUTOMOBILE CRUISE CONTROL

PROBLEM: Find a mode invariant of mode Off

3523.08.2010

BASIC RULE FOR GENERATING
MODE INVARIANTS

q is a mode invariant of mode m if
1) q is true upon entry into mode m (q is also true initially if m is an initial

mode)
2) Occurrence of event @F(q) forces unconditional exit from m

Off

¬IgnOninitially

Cruise

Inactive
Override

@T(IgnOn)
Inactive

@F(IgnOn)

@F(IgnOn)
@F(IgnOn)

M = Off # ¬IgnOn

Applying the algorithm
when the mode M is Off

produces the invariant

BASIC RULE

3623.08.2010

KEEP, AN ALGORITHM FOR
GENERATING MODE INVARIANTS

 Compute Mode Invariant

 Keep just the di found in C

REPEAT THESE THREE STEPS
UNTIL A FIXPOINT IS REACHED

To strengthen invariant, use
• initial state predicate
• environmental constraints
• invariants computed on
 earlier passes

Compute Mode Entry Conditions:
C is the disjunction c1'c2'... 'cm
of conditions true when mode
entered

Compute Unconditional Exit Set:
 Set {d1,d2,...,dn} of simple Boolean
 conditions whose falsification
 causes unconditional exit from mode

Jeffords and Heitmeyer,Jeffords and Heitmeyer, FSE98 FSE98

3723.08.2010

APPLYING GROUP:
A SIMPLE EXAMPLE

s1

s3

s2A%B
initially @F@F((A)

@T@T((A)

@F@F((B) @F@F((B)

Applying KEEP, it is easy to show that
• A is an invariant of s1
• ¬ A is an invariant of s2
BUT KEEP does not produce any interesting
results about B

3823.08.2010

APPLYING GROUP:
A SIMPLE EXAMPLE

Applying GROUP, we consider sets of states
 If we consider the set of states G = {s1, s2}
• The uncond. exit set of G is B
• The mode entry condition of G is A%B
• Hence B is an invariant of s1 and s2

s1

s3

s2A%B
initially @F@F((A)

@T@T((A)

@F@F((B) @F@F((B)

3923.08.2010

INVARIANTS CONSTRUCTED BY KEEP

APPLY
KEEP

SET OF STATE
INVARIANTS

M=Off # ¬IgnOn
M =Cruise # ¬Brake % Lever ! Off
M =Override # true
M =Inactive # true

4023.08.2010

GROUP STRENGTHENS
INVARIANTS CONSTRUCTED BY KEEP

APPLY
KEEP

SET OF STATE
INVARIANTS

SET OF (STRENGTHENED)
STATE INVARIANTS

APPLY
GROUP

M=Off # ¬IgnOn
M =Cruise # ¬Brake % Lever ! Off
M =Override # true
M =Inactive # true

M=Off # ¬IgnOn
M =Cruise # ¬Brake % Lever ! Off % IgnOn % -ngRunning
M =Override # IgnOn % -ngRunning
M =Inactive # IgnOn

APPLYING THE SCR
TOOLS IN PRACTICE

