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First Remarks

Probability? Yes.
Continuous Time? Yes.
Performance? Yes.
Reliability? Yes.
Security? No.
Concurrency? Yes.
Compositionality? Yes.
Computability? Yes.
Tools? Several.
Applications? Plenty.

Numerical Stability? Huh?
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Setting the stage



Transition system

A transition system is a tuple

7 = (S.Act, —, s0)

e S is the state space, i.e., set of states,
Act is a set of actions,

e — C S x Act x S is the transition relation,
TS, ¥
transitions are of the form s L 5

e sp € S the initial state.
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Transition system

A transition system is a tuple

7T = (S.Act, —, 50, AP, L)

e S is the state space, i.e., set of states,
Act is a set of actions,

e — C S x Act x S is the transition relation,

transitions are of the form s —— s’
e 5o € S the initial state,
AP a set of atomic propositions,

e [:S— 24P the labeling function JCL
. . =0
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Concurrency and communication

“real” concurrent system

P = Pi |l :::|| Ba

I

transition system

T = 1| || 7,

Holy Grail: define semantic operators on transition systems
that model “real” concurrent behaviour



Operators for parallelism and communication

e pure concurrency Interleaving
for entirely independent systems

no communication, no dependencies

e synchronous message passing

e synchronous product
for parallel systems with fully synchronous execution
e.g. clocked hardware

. and the full monty ...

shared
t storage




Interleaving operator for transition systems
=151, ACtl. —1.501.AP1. L1) T =5z, ACtg. —9,502. AP2, L)

The composite transition system 7; ||| 75 is:
Ti||| 2 = (51 % S Acty U Actz, —, (so1.502). AP, L)

where the transition relation — is given by:

i} ! Cr !
51 719 2 72 B
Y (}

(s1.%2) — (51, %2) (s1.52) — (s1,5))

atomic propositions: AP = APy £ AP,

labeling function: L((s;.s5)) = Li(s1) U La(sp)



Synchronous product for transition systems

T Z(Sl.ACtl.—'l....) E‘:(Sz.ACtQ.—'z....)

The synchronous product 7; @ 75 is:
TiR T, = (51 X S, Act, —. )

where the transition relation — is given by:

o 3
s1—15 N S5 —S)

a3

/ /
(51, %2) — (51, %)
action set Act is given by a function
+: Acty x Acty, — Act, (a.p)—axp

for parallel systems with fully synchronous execution



Synchronous message passing for transition systems
JI}_I(Sl.ACtl.—Fl....) EI(Sz.ACtz.—-z....)

The concurrent execution with synchronization over all actions in Syn is:
17y llsyn 72 = (Si S>.Act; U ACtg.—....)

where Syn C Act; M Acty set of synchronization actions

interleaving for o € Act; \ Syn:

51 i?“1 5{ ", ;.“*2 Sﬁ
(51,8) = (s1.52) (51.%) — (s1,5))

handshaking (rendezvous) for o € Syn:
51315_-'1 A\ 52%255

<51.' 52) o (5{? 55)







Channel systems and shared variable systems

We want to represent data-dependent concurrent systems with
e communication over shared variables
e synchronous message passing (channels of capacity 0)
e asynchronous message passing (capacity > 1)

shared

storage

This can all be encoded into

e transition systems
and synchronous message passing



Bisimulation, a natural equivalence
ﬂ_z(s]_.ACtl_.—-*l....) E:(Sz.ACtz.'—'z....)

A relation R € S; x S, is a bisimulation, if
for all (s;.s) € R and for all a € Act:

(1) s; —1sy implies 3 s, =3, such that (s},s)) R
(2) sp =5, implies 3 s ;s such that (s},s})€R

Bisimulation equivalence of 7; and 7; requires that
7 and 7> can simulate each other in a stepwise manner

T, ~ T iff there is a bisimulation R for (7;.75) relating the initial states.

Bisimulation equivalence is a congruence for |s,, (and @, and ...)

Can be weakened to ignore 'internal’ moves, same principal properties.






What we have

Transition systems.

A (set of) natural and expressive composition operator(s).

A natural congruence notion, bisimulation.
What does this buy us?

Principal understanding.
What we also have:
An abstraction operator (hiding).
Efficient minimisation algorithms for bisimulation.

Matching logics (CTL, sugared a-f mu-calculus).
What does this buy us?

Compositional minimisation. Practical verification.
Who sells that?



What is CADP?

Home Page
Tools Overview

Current Status

Installation

How to obtain CADP?

Usage Stalistics
Issues & Patches

Tutorials
Publications
Manual Pages

Demo Examples
FAQ

CADP Newsletters

Nr.1-Dec. 1996
Mr. 2 - Jun. 1997
Nr.3- Sep. 1997
Nr.4-Jan. 1999
Mr 5 - Jul. 2001

Nr. 6 - Apr. 2007

CADP Community

Farurn

_ :
Case Studies
Research Tools

o demo 31 VRS SOST D by arbitration protocol
Hubert Garavel, Holger Hermanns, Radu Mateescu, Christophe Jeubert, and David Champelovier
Tools used: CAESAR, CAESAR ADT, BCG_MIN, BCG_STEADY, DETERMINATOR, EVALUATOR, SVL

® demo 32 Sequentially consistent, distributed cache memory
wusanne Traf and Wendehn Serwe
Tools used: CAESAR, CAESAR ADT, BISIMULATOR, BCG_MIN, SVL

® demo 33 Randomized binary distnbuted consensus protocol
Frédéric Tronel and Frédéric Lang
Tools used: CAESAR, CAESAR ADT, BCG_GRAPH, BISIMULATOR, PROJECTOER, SWL

® demo 34 Computer integrated manufacturing (CIMN) architecture
Radu Mateescu
Tools used: BCG_MIN, CAESAR, CAESAR ADT, EVALUATOER, 3VL

® demo 35 Distributed summation algorithm using "n ameng m" synchronization
Frédéric Lang
Tools used: BCG_MIN, CAESAR, CAESAR ADT, EXP OPEN, SVL

® demo 36 Distributed Erathostenes sieve
Frédéric Lang
Tools used: BCG_LABELS, BCG_NMIN, EISIMULATOR, CAESAR, CAESAR ADT, EXP.OPEN, SVL

® demo 37 ODP (Open Distributed Processing) trader

Frédéric Lang

Tools used: BCG_MIN, BISIMULATOR, CAESAR ADT, CAESAR, EXP OPEN, PROJECTOR, SVL
* demo 33 MNew!| Asynchronous circutt for the DES (Data Encryption Standard)

Wendelin Serwe and Hubert Garavel
Tools used: BCG_MIN, BISIMULATOR, CAESAR ADT, CAESAR, EXEC/CAESAR, EXP OPEN, PROJECTOR, SVL

few! | Turntable system for drilling products

Faduy Maieescu
Tools used: BCG MIN, BCG STEADY, BISIMULATOR, CAESAR, CAESAR ADT, DETERMINATOR, EVALTJATOE,
SVL

o demo 40; NeWE| Web services for stock management and on-line book auction
Antonelia Chirichiello, Gwen Salaun, and Wendelin Serwe




Random Basics



Stochastic Processes

Stochastic process
A stochastic process is a family of random variables {X(t) | t € T}
defined on the same probability space (2. F, P).

State space S

e For each t, X(t): Q2 — S with S finite or countable.

e S is called the state space.

Time domain T
A stochastic process {X(t) |t € T} is called

e discrete-time if T = N,

e continuous-time if T = R.



Markov chains

Markov property:
the past influences the future only via the present. A stochastic process
{X(t) | t € R} is a Markov chain if it satisfies the Markov property: for all

O=fH<h < ... << thif and 55€ 5:

P(Xr,,+1 = Sp+1 | th = Sp; Xr,.,_l = Sp—1y--- 1X!‘g = 50)
= P(an+1 = Sp+1 ] th = 5!1)

Discrete-time Markov chain:
For T = N we have an equivalent formulation:

P(Xn+1 = Spt1 | Xn = $p, Xn—1 = Sp—1,...,Xo = 50)
— P(Xn-l-l = Sp+1 | Xn = sn)



Homogeneous DTMCs, graphically
We consider homogeneous Markov chains:

P X4 =5 | Xy=38)= P{Xy=1" | Xg=:15)

Graph-based definition
A homogeneous DTMC can be represented as a tuple: (S, P, 7(0)) where
e S is the set of states,
e P:5x5—[0,1] with ) _sP(s,s’) =1 is the transition matrix,
e 7(0) is the initial distribution

This is the usual graphical representation.
Until further notice we restrict to finite S.




Example — Craps Gambling Game

First roll;

Y =7or) =11: you win
Y =2,3,12: you lose
e otherwise: s = ) is stored

Henceforth:

e ) = s: you win
e Y =T7: you lose
e otherwise: repeat




The Craps Gambling Game as a Markov Chain

First roll:

e Y =T7or) =11: you win
1 ® > =2,312 you lose
e otherwise: s = ) _ is stored

Henceforth:

e ) =s: you win
e Y =T7: you lose
e otherwise: repeat



Real-world example: IPv4 Zeroconf Protocol

Why Zeroconf?

e Network administrators: assign addresses for |IP hosts and network
infrastructure

e Zeroconf: dynamic configuration of IPv4 Link-Local addresses
e even simple devices are able to communicate when attached

e simple and inexpensive for this form of networking

Zeroconf

e new hosts: randomly pick an address among the K (65024) addresses

e with m hosts in the network, collision probability is

the host asks other hosts whether they are using this address

e |ossy channel: probability of no answer in case of collision is p



Zeroconf as a Markov chain




