

From Concurrency Models to Numbers:
Performance, Dependability, Energy

Holger Hermanns

Saarland University — Computer Science, Germany
INRIA Grenoble — Rhone-Alpes, France

International Summer School Marktoberdorf
August, 2010

First Remarks

Probability? Yes.
Continuous Time? Yes.
Performance? Yes.
Reliability? Yes.
Security? No.
Concurrency? Yes.
Compositionality? Yes.
Computability? Yes.
Tools? Several.
Applications? Plenty.

Numerical Stability? Huh?

COMMUNICATIONS OF THE ACM | SEPTEMBER 2010 | VOL.53 | NO. 9

Setting the stage

Transition system

A transition system is a tuple

7 = (S.Act, —, s0)

e S is the state space, i.e., set of states,
Act is a set of actions,

e — C S x Act x S is the transition relation,
TS, ¥
transitions are of the form s L 5

e sp € S the initial state.
gb
=0

3&-{3 ol_rl;\](

Transition system

A transition system is a tuple

7T = (S.Act, —, 50, AP, L)

e S is the state space, i.e., set of states,
Act is a set of actions,

e — C S x Act x S is the transition relation,

transitions are of the form s —— s’
e 5o € S the initial state,
AP a set of atomic propositions,

e [:S— 24P the labeling function JCL
. . =0

ab‘& olrl;\](

Concurrency and communication

“real” concurrent system

P = Pi |l :::|| Ba

I

transition system

T = 1| || 7,

Holy Grail: define semantic operators on transition systems
that model “real” concurrent behaviour

Operators for parallelism and communication

e pure concurrency Interleaving
for entirely independent systems

no communication, no dependencies

e synchronous message passing

e synchronous product
for parallel systems with fully synchronous execution
e.g. clocked hardware

. and the full monty ...

shared
t storage

Interleaving operator for transition systems
=151, ACtl. —1.501.AP1. L1) T =5z, ACtg. —9,502. AP2, L)

The composite transition system 7; ||| 75 is:
Ti||| 2 = (51 % S Acty U Actz, —, (so1.502). AP, L)

where the transition relation — is given by:

i} ! Cr !
51 719 2 72 B
Y (}

(s1.%2) — (51, %2) (s1.52) — (s1,5))

atomic propositions: AP = APy £ AP,

labeling function: L((s;.s5)) = Li(s1) U La(sp)

Synchronous product for transition systems

T Z(Sl.ACtl.—'l....) E‘:(Sz.ACtQ.—'z....)

The synchronous product 7; @ 75 is:
TiR T, = (51 X S, Act, —.)

where the transition relation — is given by:

o 3
s1—15 N S5 —S)

a3

/ /
(51, %2) — (51, %)
action set Act is given by a function
+: Acty x Acty, — Act, (a.p)—axp

for parallel systems with fully synchronous execution

Synchronous message passing for transition systems
JI}_I(Sl.ACtl.—Fl....) EI(Sz.ACtz.—-z....)

The concurrent execution with synchronization over all actions in Syn is:
17y llsyn 72 = (Si S>.Act; U ACtg.—....)

where Syn C Act; M Acty set of synchronization actions

interleaving for o € Act; \ Syn:

51 i?“1 5{ ", ;.“*2 Sﬁ
(51,8) = (s1.52) (51.%) — (s1,5))

handshaking (rendezvous) for o € Syn:
51315_-'1 A\ 52%255

<51.' 52) o (5{? 55)

Channel systems and shared variable systems

We want to represent data-dependent concurrent systems with
e communication over shared variables
e synchronous message passing (channels of capacity 0)
e asynchronous message passing (capacity > 1)

shared

storage

This can all be encoded into

e transition systems
and synchronous message passing

Bisimulation, a natural equivalence
ﬂ_z(s]_.ACtl_.—-*l....) E:(Sz.ACtz.'—'z....)

A relation R € S; x S, is a bisimulation, if
for all (s;.s) € R and for all a € Act:

(1) s; —1sy implies 3 s, =3, such that (s},s)) R
(2) sp =5, implies 3 s ;s such that (s},s})€R

Bisimulation equivalence of 7; and 7; requires that
7 and 7> can simulate each other in a stepwise manner

T, ~ T iff there is a bisimulation R for (7;.75) relating the initial states.

Bisimulation equivalence is a congruence for |s,, (and @, and ...)

Can be weakened to ignore 'internal’ moves, same principal properties.

What we have

Transition systems.

A (set of) natural and expressive composition operator(s).

A natural congruence notion, bisimulation.
What does this buy us?

Principal understanding.
What we also have:
An abstraction operator (hiding).
Efficient minimisation algorithms for bisimulation.

Matching logics (CTL, sugared a-f mu-calculus).
What does this buy us?

Compositional minimisation. Practical verification.
Who sells that?

What is CADP?

Home Page
Tools Overview

Current Status

Installation

How to obtain CADP?

Usage Stalistics
Issues & Patches

Tutorials
Publications
Manual Pages

Demo Examples
FAQ

CADP Newsletters

Nr.1-Dec. 1996
Mr. 2 - Jun. 1997
Nr.3- Sep. 1997
Nr.4-Jan. 1999
Mr 5 - Jul. 2001

Nr. 6 - Apr. 2007

CADP Community

Farurn

_ :
Case Studies
Research Tools

o demo 31 VRS SOST D by arbitration protocol
Hubert Garavel, Holger Hermanns, Radu Mateescu, Christophe Jeubert, and David Champelovier
Tools used: CAESAR, CAESAR ADT, BCG_MIN, BCG_STEADY, DETERMINATOR, EVALUATOR, SVL

® demo 32 Sequentially consistent, distributed cache memory
wusanne Traf and Wendehn Serwe
Tools used: CAESAR, CAESAR ADT, BISIMULATOR, BCG_MIN, SVL

® demo 33 Randomized binary distnbuted consensus protocol
Frédéric Tronel and Frédéric Lang
Tools used: CAESAR, CAESAR ADT, BCG_GRAPH, BISIMULATOR, PROJECTOER, SWL

® demo 34 Computer integrated manufacturing (CIMN) architecture
Radu Mateescu
Tools used: BCG_MIN, CAESAR, CAESAR ADT, EVALUATOER, 3VL

® demo 35 Distributed summation algorithm using "n ameng m" synchronization
Frédéric Lang
Tools used: BCG_MIN, CAESAR, CAESAR ADT, EXP OPEN, SVL

® demo 36 Distributed Erathostenes sieve
Frédéric Lang
Tools used: BCG_LABELS, BCG_NMIN, EISIMULATOR, CAESAR, CAESAR ADT, EXP.OPEN, SVL

® demo 37 ODP (Open Distributed Processing) trader

Frédéric Lang

Tools used: BCG_MIN, BISIMULATOR, CAESAR ADT, CAESAR, EXP OPEN, PROJECTOR, SVL
* demo 33 MNew!| Asynchronous circutt for the DES (Data Encryption Standard)

Wendelin Serwe and Hubert Garavel
Tools used: BCG_MIN, BISIMULATOR, CAESAR ADT, CAESAR, EXEC/CAESAR, EXP OPEN, PROJECTOR, SVL

few! | Turntable system for drilling products

Faduy Maieescu
Tools used: BCG MIN, BCG STEADY, BISIMULATOR, CAESAR, CAESAR ADT, DETERMINATOR, EVALTJATOE,
SVL

o demo 40; NeWE| Web services for stock management and on-line book auction
Antonelia Chirichiello, Gwen Salaun, and Wendelin Serwe

Random Basics

Stochastic Processes

Stochastic process
A stochastic process is a family of random variables {X(t) | t € T}
defined on the same probability space (2. F, P).

State space S

e For each t, X(t): Q2 — S with S finite or countable.

e S is called the state space.

Time domain T
A stochastic process {X(t) |t € T} is called

e discrete-time if T = N,

e continuous-time if T = R.

Markov chains

Markov property:
the past influences the future only via the present. A stochastic process
{X(t) | t € R} is a Markov chain if it satisfies the Markov property: for all

O=fH<h < ... << thif and 55€ 5:

P(Xr,,+1 = Sp+1 | th = Sp; Xr,.,_l = Sp—1y--- 1X!‘g = 50)
= P(an+1 = Sp+1] th = 5!1)

Discrete-time Markov chain:
For T = N we have an equivalent formulation:

P(Xn+1 = Spt1 | Xn = $p, Xn—1 = Sp—1,...,Xo = 50)
— P(Xn-l-l = Sp+1 | Xn = sn)

Homogeneous DTMCs, graphically
We consider homogeneous Markov chains:

P X4 =5 | Xy=38)= P{Xy=1" | Xg=:15)

Graph-based definition
A homogeneous DTMC can be represented as a tuple: (S, P, 7(0)) where
e S is the set of states,
e P:5x5—[0,1] with) _sP(s,s’) =1 is the transition matrix,
e 7(0) is the initial distribution

This is the usual graphical representation.
Until further notice we restrict to finite S.

Example — Craps Gambling Game

First roll;

Y =7or) =11: you win
Y =2,3,12: you lose
e otherwise: s =) is stored

Henceforth:

e) = s: you win
e Y =T7: you lose
e otherwise: repeat

The Craps Gambling Game as a Markov Chain

First roll:

e Y =T7or) =11: you win
1 ® > =2,312 you lose
e otherwise: s =) _ is stored

Henceforth:

e) =s: you win
e Y =T7: you lose
e otherwise: repeat

Real-world example: IPv4 Zeroconf Protocol

Why Zeroconf?

e Network administrators: assign addresses for |IP hosts and network
infrastructure

e Zeroconf: dynamic configuration of IPv4 Link-Local addresses
e even simple devices are able to communicate when attached

e simple and inexpensive for this form of networking

Zeroconf

e new hosts: randomly pick an address among the K (65024) addresses

e with m hosts in the network, collision probability is

the host asks other hosts whether they are using this address

e |ossy channel: probability of no answer in case of collision is p

Zeroconf as a Markov chain

