

# From Concurrency Models to Numbers: Performance, Dependability, Energy

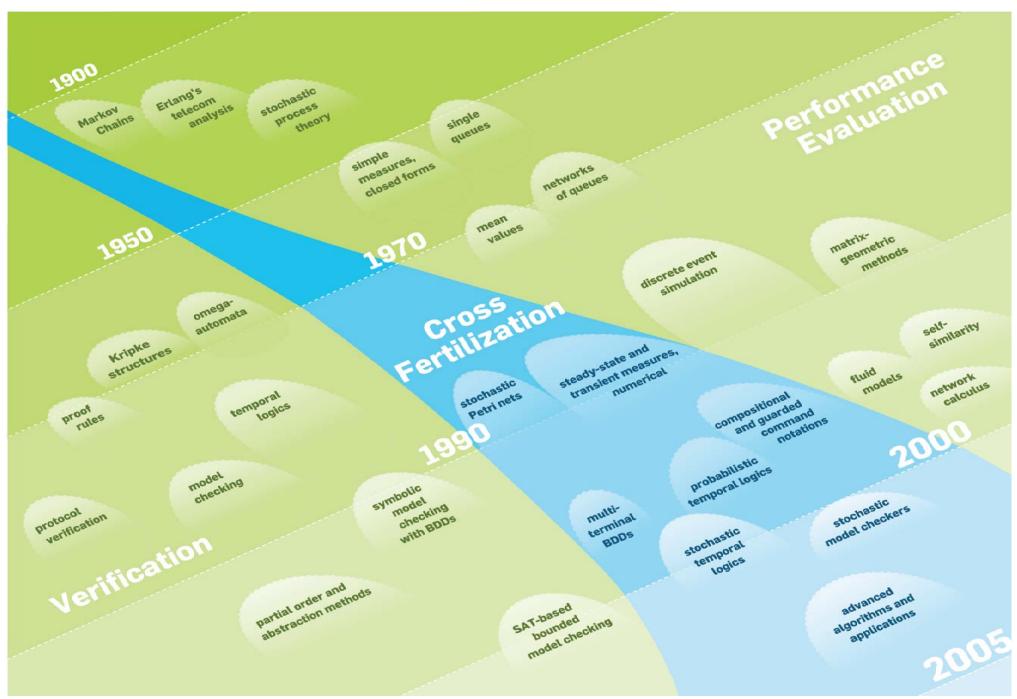
Holger Hermanns

Saarland University – Computer Science, Germany INRIA Grenoble – Rhône-Alpes, France

International Summer School Marktoberdorf August, 2010

### First Remarks

Yes. Probability? Continuous Time? Yes. Performance? Yes. Reliability? Yes. Security? No. Yes. Concurrency? Compositionality? Yes. Computability? Yes. Tools? Several. Applications? Plenty. Numerical Stability? Huh?



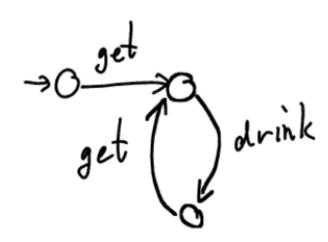
# Setting the stage

### **Transition system**

A transition system is a tuple

$$T = (S, Act, \longrightarrow, s_0)$$

- S is the state space, i.e., set of states,
- Act is a set of actions,
- $\longrightarrow$   $\subseteq$  S  $\times$  Act  $\times$  S is the transition relation, transitions are of the form s  $\stackrel{\alpha}{\longrightarrow}$  s'
- $s_0 \in S$  the initial state.



### **Transition system**

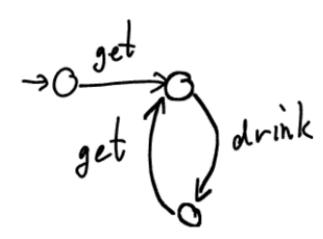
A transition system is a tuple

$$\mathcal{T} = (S, \mathsf{Act}, \longrightarrow, s_0, AP, L)$$

- S is the state space, i.e., set of states,
- Act is a set of actions,
- $\longrightarrow$   $\subseteq$   $S \times Act \times S$  is the transition relation,

transitions are of the form  $s \xrightarrow{\alpha} s'$ 

- s<sub>0</sub> ∈ S the initial state,
- AP a set of atomic propositions,
- $L: S \to 2^{AP}$  the labeling function.



### **Concurrency and communication**

"real" concurrent system

$$P = P_1 \parallel \ldots \parallel P_n$$



transition system

$$\mathcal{T} = \mathcal{T}_1 \parallel \cdots \parallel \mathcal{T}_n$$

Holy Grail: define semantic operators on transition systems that model "real" concurrent behaviour

### Operators for parallelism and communication

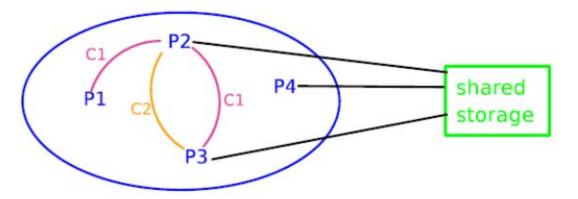
pure concurrency

for entirely independent systems no communication, no dependencies

- synchronous message passing
- synchronous product

for parallel systems with fully synchronous execution e.g. clocked hardware

... and the full monty ...



### Interleaving operator for transition systems

$$T_1 = (S_1, Act_1, \longrightarrow_1, s_{01}, AP_1, L_1)$$

$$T_2 = (S_2, Act_2, \longrightarrow_2, s_{02}, AP_2, L_2)$$

The composite transition system  $T_1 \mid \mid T_2$  is:

$$T_1 \mid \mid T_2 = (S_1 \times S_2, Act_1 \cup Act_2, \longrightarrow, \langle s_{01}, s_{02} \rangle, AP, L)$$

where the transition relation — is given by:

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2 \rangle} \qquad \frac{s_2 \xrightarrow{\alpha}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s_2' \rangle}$$

atomic propositions:  $AP = AP_1 \uplus AP_2$ 

labeling function:  $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ 

### Synchronous product for transition systems

$$T_1 = (S_1, \mathsf{Act}_1, \longrightarrow_1, \ldots)$$
  $T_2 = (S_2, \mathsf{Act}_2, \longrightarrow_2, \ldots)$ 

The synchronous product  $T_1 \otimes T_2$  is:

$$\mathcal{T}_1 \otimes \mathcal{T}_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

where the transition relation  $\longrightarrow$  is given by:

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1' \land s_2 \xrightarrow{\beta}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha * \beta} \langle s_1', s_2' \rangle}$$

action set Act is given by a function

$$*: \mathsf{Act}_1 \times \mathsf{Act}_2 \longrightarrow \mathsf{Act}, \quad (\alpha, \beta) \mapsto \alpha * \beta$$

for parallel systems with fully synchronous execution

### Synchronous message passing for transition systems

$$T_1 = (S_1, \mathsf{Act}_1, \longrightarrow_1, \ldots)$$

$$T_2 = (S_2, Act_2, \longrightarrow_2, \ldots)$$

The concurrent execution with synchronization over all actions in Syn is:

$$T_1 \parallel_{\mathsf{Syn}} T_2 = (S_1 \times S_2, \mathsf{Act}_1 \cup \mathsf{Act}_2, \rightarrow, \ldots)$$

where Syn  $\subseteq$  Act<sub>1</sub>  $\cap$  Act<sub>2</sub> set of synchronization actions

**interleaving** for  $\alpha \in \mathsf{Act}_i \setminus \mathsf{Syn}$ :

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_{} \langle s_1', s_2 \rangle} \qquad \frac{s_2 \xrightarrow{\alpha}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_{} \langle s_1, s_2' \rangle}$$

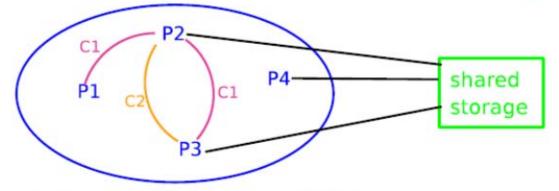
**handshaking (rendezvous)** for  $\alpha \in Syn$ :

Lecturer Lecturer 1/2 pass} Student

### Channel systems and shared variable systems

We want to represent data-dependent concurrent systems with

- communication over shared variables
- synchronous message passing (channels of capacity 0)
- asynchronous message passing (capacity ≥ 1)



#### This can all be encoded into

transition systems
and synchronous message passing

### Bisimulation, a natural equivalence

$$T_1 = (S_1, Act_1, \longrightarrow_1, \ldots)$$

$$T_2 = (S_2, Act_2, \longrightarrow_2, \ldots)$$

A relation  $\mathbf{R} \subseteq S_1 \times S_2$  is a <u>bisimulation</u>, if for all  $(s_1, s_2) \in \mathbf{R}$  and for all  $\alpha \in \mathsf{Act}$ :

- (1)  $s_1 \xrightarrow{\alpha}_1 s_1'$  implies  $\exists s_2 \xrightarrow{\alpha}_2 s_2'$  such that  $(s_1', s_2') \in \mathbf{R}$
- (2)  $s_2 \xrightarrow{\alpha}_2 s_2'$  implies  $\exists s_1 \xrightarrow{\alpha}_1 s_1'$  such that  $(s_1', s_2') \in \mathbf{R}$

### **Bisimulation equivalence** of $\mathcal{T}_1$ and $\mathcal{T}_2$ requires that

 $\mathcal{T}_1$  and  $\mathcal{T}_2$  can simulate each other in a stepwise manner

 $\mathcal{T}_1 \sim \mathcal{T}_2$  iff there is a bisimulation **R** for  $(\mathcal{T}_1, \mathcal{T}_2)$  relating the initial states.

Bisimulation equivalence is a congruence for ∥<sub>Syn</sub> (and ⊗, and ...)

Can be weakened to ignore 'internal' moves, same principal properties.

Lecturer Student Lecturer 1/{pass} Student drink

#### What we have

Transition systems.

A (set of) natural and expressive composition operator(s).

A natural congruence notion, bisimulation.

#### What does this buy us?

Principal understanding.

#### What we also have:

An abstraction operator (hiding).

Efficient minimisation algorithms for bisimulation.

Matching logics (CTL, sugared a-f mu-calculus).

#### What does this buy us?

Compositional minimisation. Practical verification.

#### Who sells that?



#### Vhat is CADP?

Home Page Tools Overview Current Status

How to obtain CADP? Usage Statistics Issues & Patches

#### ocumentation)

Tutorials Publications Manual Pages Demo Examples FAQ

Nr. 1 - Dec. 1996 Nr. 2 - Jun. 1997

Nr. 3 - Sep. 1997

Nr. 4 - Jan. 1999

Nr. 5 - Jul. 2001

Nr. 6 - Apr. 2007

#### **CADP Community**

Forum

Education & Training Case Studies

Research Tools

• demo 31: VPDATED SCSI-2 bus arbitration protocol

Hubert Garavel, Holger Hermanns, Radu Mateescu, Christophe Joubert, and David Champelovier Tools used: CAESAR, CAESAR ADT, BCG\_MIN, BCG\_STEADY, DETERMINATOR, EVALUATOR, SVL

demo 32: Sequentially consistent, distributed cache memory

Susanne Graf and Wendelin Serwe

Tools used: CAESAR, CAESAR ADT, BISIMULATOR, BCG MIN, SVL

demo 33: Randomized binary distributed consensus protocol

Frédéric Tronel and Frédéric Lang

Tools used: CAESAR, CAESAR, ADT, BCG GRAPH, BISIMULATOR, PROJECTOR, SVL

· demo 34: Computer integrated manufacturing (CIM) architecture

Radu Mateescu

Tools used: BCG MIN, CAESAR, CAESAR ADT, EVALUATOR, SVL

. demo 35: Distributed summation algorithm using "n among m" synchronization

Frédéric Lang

Tools used: BCG MIN, CAESAR, CAESAR ADT, EXP. OPEN, SVL

demo 36: Distributed Erathostenes sieve

Frédéric Lang

Tools used: BCG\_LABELS, BCG\_MIN, BISIMULATOR, CAESAR, CAESAR ADT, EXP.OPEN, SVL

· demo 37: ODP (Open Distributed Processing) trader

Frédéric Lang

Tools used: BCG MIN, BISIMULATOR, CAESAR ADT, CAESAR, EXP. OPEN, PROJECTOR, SVL

demo 38: New! Asynchronous circuit for the DES (Data Encryption Standard)

Wendelin Serwe and Hubert Garavel

Tools used: BCG\_MIN, BISIMULATOR, CAESAR ADT, CAESAR, EXEC/CAESAR, EXP. OPEN, PROJECTOR. SVL

. demo 39: New! Turntable system for drilling products

Radu Mateescu

Tools used: BCG MIN, BCG STEADY, BISIMULATOR, CAESAR, CAESAR, ADT, DETERMINATOR, EVALUATOR, SVL

. demo 40: New! Web services for stock management and on-line book auction Antonella Chirichiello, Gwen Salaun, and Wendelin Serwe

## **Random Basics**

### **Stochastic Processes**

#### Stochastic process

A stochastic process is a family of random variables  $\{X(t) \mid t \in T\}$  defined on the same probability space  $(\Omega, \mathcal{F}, P)$ .

#### State space S

- For each  $t, X(t): \Omega \to S$  with S finite or countable.
- S is called the state space.

#### Time domain T

A stochastic process  $\{X(t) \mid t \in T\}$  is called

- discrete-time if  $T = \mathbb{N}$ ,
- continuous-time if  $T = \mathbb{R}$ .

#### Markov chains

#### Markov property:

the past influences the future only via the present. A stochastic process  $\{X(t) \mid t \in \mathbb{R}\}$  is a Markov chain if it satisfies the Markov property: for all  $0 = t_0 < t_1 < ... < t_n < t_{n+1}$  and  $s_i \in S$ :

$$P(X_{t_{n+1}} = s_{n+1} \mid X_{t_n} = s_n, X_{t_{n-1}} = s_{n-1}, \dots, X_{t_0} = s_0)$$
  
=  $P(X_{t_{n+1}} = s_{n+1} \mid X_{t_n} = s_n)$ 

#### Discrete-time Markov chain:

For  $T = \mathbb{N}$  we have an equivalent formulation:

$$P(X_{n+1} = s_{n+1} \mid X_n = s_n, X_{n-1} = s_{n-1}, \dots, X_0 = s_0)$$
  
=  $P(X_{n+1} = s_{n+1} \mid X_n = s_n)$ 

### Homogeneous DTMCs, graphically

We consider homogeneous Markov chains:

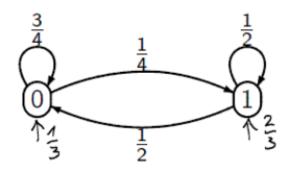
$$P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)$$

#### **Graph-based definition**

A homogeneous DTMC can be represented as a tuple:  $(S, P, \pi(0))$  where

- 5 is the set of states,
- $P: S \times S \rightarrow [0,1]$  with  $\sum_{s' \in S} P(s,s') = 1$  is the transition matrix,
- $\pi(0)$  is the initial distribution

This is the usual graphical representation. Until further notice we restrict to finite S.





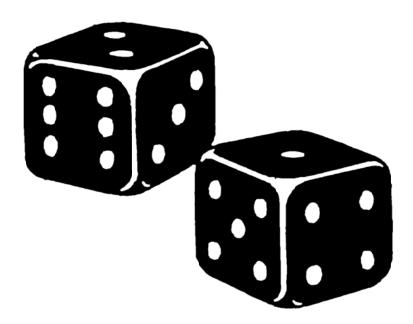
### **Example – Craps Gambling Game**

#### First roll:

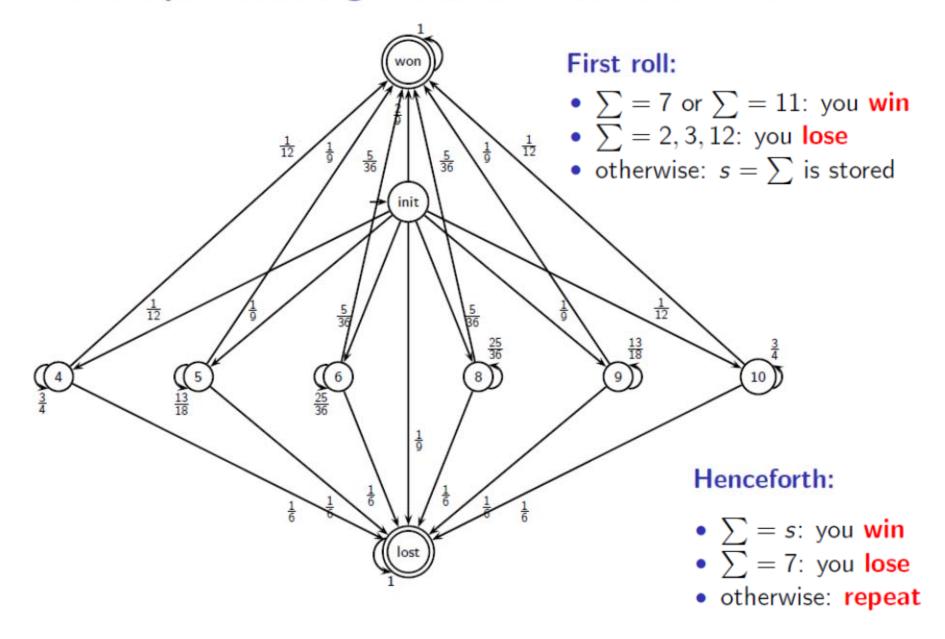
- $\sum = 7$  or  $\sum = 11$ : you win
- $\sum = 2, 3, 12$ : you **lose**
- otherwise:  $s = \sum$  is stored

#### Henceforth:

- $\sum = s$ : you win
- $\sum = 7$ : you lose
- otherwise: repeat



### The Craps Gambling Game as a Markov Chain



### Real-world example: IPv4 Zeroconf Protocol

#### Why Zeroconf?

- Network administrators: assign addresses for IP hosts and network infrastructure
- Zeroconf: dynamic configuration of IPv4 Link-Local addresses
- even simple devices are able to communicate when attached
- simple and inexpensive for this form of networking

#### Zeroconf

- new hosts: randomly pick an address among the K (65024) addresses
- with m hosts in the network, collision probability is m
- the host asks other hosts whether they are using this address
- lossy channel: probability of no answer in case of collision is p

### Zeroconf as a Markov chain

