

What we have

Transition systems.

A (set of) natural and expressive composition operator(s).

A natural congruence notion, bisimulation.

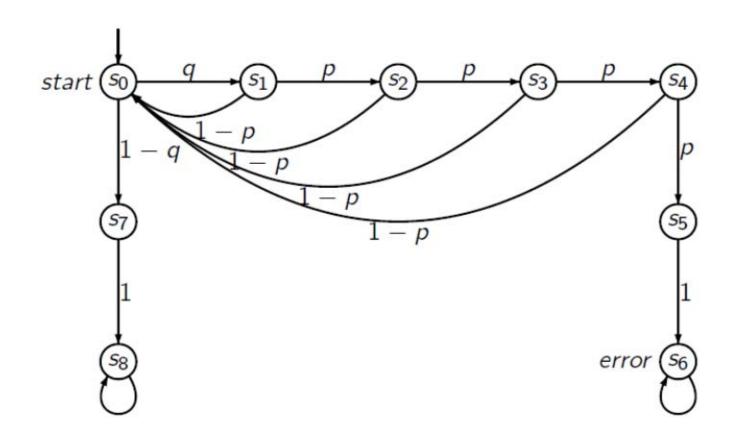
What we also have:

An abstraction operator (hiding).

Efficient minimisation algorithms for bisimulation.

Matching logics (CTL, sugared a-f mu-calculus).

Zeroconf as a Markov chain



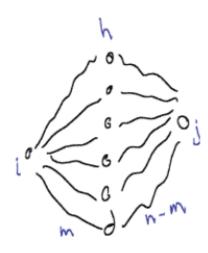
Probabilities for *n*-steps

- P(s, s') is the one-step transition probability from s to s'.
- Let $P^{(n)}$ denote the *n*-step transition matrix

$$p_{ij}^{(n)} := P(X_n = j \mid X_0 = i) = P(X_{k+n} = j \mid X_k = i).$$

- Note: $P^{(1)} = P$
- Applying the law of total probability we get the Chapman-Kolmogorov equation:

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)}$$



for all 0 < m < n

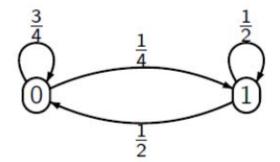
• It then follows that: $\mathbf{P}^{(n)} = \mathbf{P}\mathbf{P}^{(n-1)} = \mathbf{P}^n$

The transient state probability distribution at time n is defined by:

•
$$\pi(n) := \pi(0) \mathbf{P}^n = \pi(n-1) \mathbf{P}$$

Example

A simple DTMC



$$\mathbf{P} = \begin{pmatrix} 0.75 & 0.25 \\ 0.5 & 0.5 \end{pmatrix}$$

$$\mathbf{P}^2 = \left(\begin{array}{cc} 0.6875 & 0.3125 \\ 0.625 & 0.375 \end{array} \right)$$

• With initial distribution $\pi(0) = (0,1)$, we get:

$$\pi(2) = \pi(0) \mathbf{P}^2 = (0,1) \mathbf{P}^2 = (0.625, 0.375)$$

• With $\pi(0) = (\frac{2}{3}, \frac{1}{3})$, we have:

$$\pi(2) = \pi(0) \mathbf{P}^2 = \left(\frac{2}{3}, \frac{1}{3}\right) \mathbf{P}^2 = \left(\frac{2}{3}, \frac{1}{3}\right)$$

Actually:
$$\pi(n) = \left(\frac{2}{3}, \frac{1}{3}\right) \quad \forall n \in \mathcal{T}$$

On the long run ...

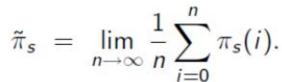
Steady state limit

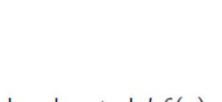
$$\tilde{\pi} := \lim_{n \to \infty} \pi(n) = \lim_{n \to \infty} \pi(0) \mathbf{P}^n = \pi(0) \lim_{n \to \infty} \mathbf{P}^n$$

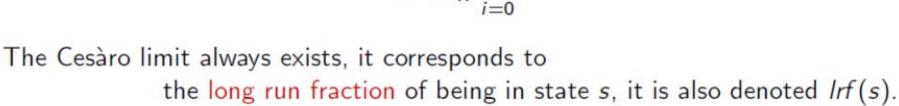
- The limit $\tilde{\pi}$ may not exist.
- The limit $\tilde{\pi}$ may depend on $\pi(0)$.
- If existing, we call $\tilde{\pi}$ the steady state probability distribution.
- $\tilde{\pi}$ is in balance, it satisfies: $\pi = \pi \, \mathbf{P}$.

If existing, the limit $\tilde{\pi}$ agrees with the Cesàro limit:

$$\tilde{\pi}_s = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^n \pi_s(i)$$

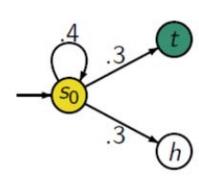


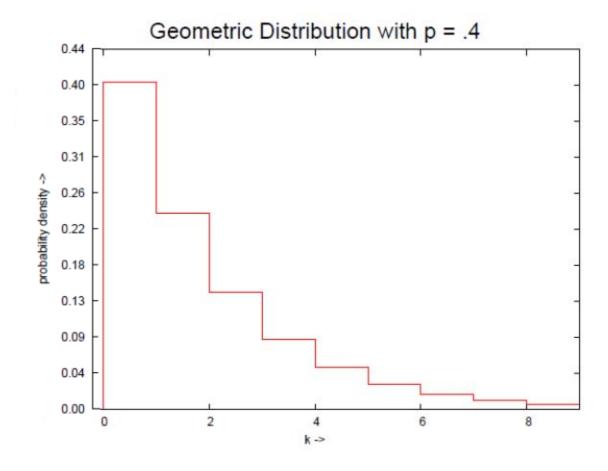




DTMC: What to remember

- Finite homogeneous discrete-time Markov chains.
- Transient behaviour: $\pi(n) = \pi(0) \mathbf{P}^n$.
- Stationary behaviour: $\tilde{\pi} = \tilde{\pi} P$.
- Sojourn time is geometrically distributed: $P(SJ = k) = p(1-p)^k$.





What comes next

We are going to discuss

Model Construction, and

Model Checking

for DTMCs

DTMC with labels

We equip states of a DTMC with labels to identify state properties:

- AP denotes the set of atomic propositions
- a DTMC is a tuple $\mathcal{D} = (S, \mathbf{P}, \pi(0), AP, L)$ where $L: S \to 2^{AP}$.

L(s) specifies the properties holding in state s.

Probabilistic Computation Tree Logic: PCTL

Syntax

State formulas:

$$\Phi := true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \phi \mid \forall \phi$$

where $a \in AP$.

Path formulas:

$$\phi := \mathcal{X} \Phi \mid \Phi_1 \mathcal{U} \Phi_2$$

Probabilistic Computation Tree Logic: PCTL

Syntax

State formulas:

$$\Phi := true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_J(\phi) \mid \mathbb{L}_J(\Phi)$$

where $a \in AP$, $J \subseteq [0,1]$ is an interval with rational bounds.

Path formulas:

$$\phi := \mathcal{X} \Phi \mid \Phi_1 \ \mathcal{U} \ \Phi_2 \mid \Phi_1 \ \mathcal{U}^{\leq n} \ \Phi_2$$

Notations

Derived notations

- $\mathbb{P}_{\leq 0.5}(\phi) := \mathbb{P}_{[0,0.5]}(\phi)$
- $\mathbb{P}_{=1}(\phi) := \mathbb{P}_{[1,1]}(\phi)$
- $\neg(\neg \Phi_1 \land \neg \Phi_2) := \Phi_1 \lor \Phi_2$
- $\Diamond \Phi := true \ \mathcal{U} \ \Phi$
- $\Box \Phi := \neg (\Diamond \neg \Phi)$ but this is not in PCTL!
- $\Diamond^{\leq n} \Phi := true \ \mathcal{U}^{\leq n} \ \Phi$
- $\mathbb{P}_{<\rho}(\Box\Phi) := \mathbb{P}_{\geq 1-\rho}(\Diamond \neg \Phi)$

For the last one: observe $\Box \Phi$ is "the negation" of $\Diamond \neg \Phi$!

Specifying properties using PCTL

the outcomes of a fair die should occur with equal probability

$$\bigwedge_{i=1,\dots,6} \mathbb{P}_{=\frac{1}{6}}(\lozenge i)$$

craps game: the probability of winning is strictly less than 0.5

$$\mathbb{P}_{<0.5}(\lozenge win)$$

 craps game: the probability of winning without ever rolling 8,9 or 10 is at least 0.32

$$\mathbb{P}_{>0.32}((\neg 8 \land \neg 9 \land \neg 10) \ \mathcal{U} \ win)$$

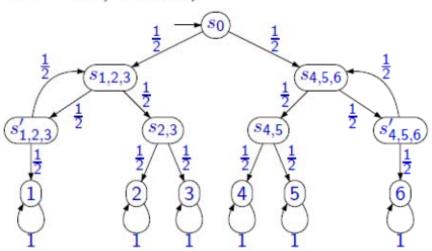


Table 1. Availability measures and their logical specification.

long-run	$\mathbb{L}_{\leq p}(up)$
instantaneous	$\mathbb{P}_{\leq p}(\lozenge^{[t,t]}up)$
conditional instantaneous	$\mathbb{P}_{ riangleleft}(\Phi\mathcal{U}^{[t,t]}up)$
interval	$\mathbb{P}_{\leq p}(\Box^{[t,t']}up)$
long-run interval	$\mathbb{L}_{ riangleleft}(\mathbb{P}_{ riangleleft}(\mathbb{D}^{[t,t']}up))$
conditional interval long-run	$\mathbb{P}_{ riangleleft}(\Phi \mathcal{U}^{[t,t']} \; \mathbb{L}_{ riangleleft}(up))$

Some Notations

For a given DTMC $\mathcal{D} = (S, \mathbf{P}, \pi(0), AP, L)$,

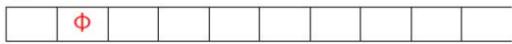
- denote by Pr the induced probability measure,
- denote by Pr_s the induced probability measure with initial state s,
- For a path $\sigma = s_0 s_1 s_2 \ldots$, for $i \geq 0$, $\sigma[i] := s_i$ denotes the i+1-th state.

Semantics

Satisfaction relation for PCTL path formulas

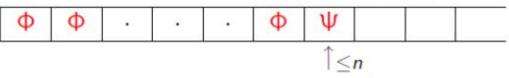
For a path σ through DTMC \mathcal{D} , the satisfaction relation \models is defined by:

• $\sigma \models \mathcal{X} \Phi \text{ iff } \sigma[1] \models \Phi$,



- $\sigma \models \Phi \ \mathcal{U} \ \Psi \ \text{iff there exists } 0 \leq i \ \text{with } \sigma[i] \models \Psi \ \text{and for all } j < i, \ \sigma[j] \models \Phi$ $\boxed{ \Phi \quad \Phi \quad \cdot \quad \cdot \quad \Phi \quad \Psi }$
- $\sigma \models \Phi \ \mathcal{U}^{\leq n} \ \Psi$ iff there exists $0 \leq i$ and $i \leq n$

with
$$\sigma[i] \models \Psi$$
 and for all $j < i$, $\sigma[j] \models \Phi$



Measurability of PCTL events

For DTMC $\mathcal{D} = (S, \mathbf{P}, \pi(0), AP, L)$, state $s \in S$ and any PCTL path formula ϕ , the set $\{\sigma \in Paths(s) \mid \sigma \models \phi\}$ is measurable.

Semantics

Satisfaction relation for PCTL state formulas

Given a DTMC \mathcal{D} , state $s \in S$, the satisfaction relation \models is defined by:

- $s \models a \text{ iff } a \in L(s)$,
- $s \models \neg \Phi \text{ iff } s \not\models \Phi$,
- $s \models \Phi \land \Psi \text{ iff } s \models \Phi \text{ and } s \models \Psi$,
- $s \models \mathbb{P}_J(\phi)$ iff $\Pr_s(\phi) \in J$,
- $s \models \mathbb{L}_J(\Phi)$ iff $\sum_{s' \models \Phi} Irf_s(s') \in J$,

Model checking

Problem (Model checking)

Let \mathcal{D} be a DTMC and Φ a PCTL state formula. The model checking problem determines whether $s \models \Phi$ for each $s \in S$.

Characterisation of the set Sat

- Sat(true) = S,
- $Sat(a) = \{s \mid a \in L(s)\},\$
- Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ),
- $Sat(\neg \Phi) = S \setminus Sat(\Phi)$,
- $Sat(\mathbb{P}_J(\phi)) = \{s \mid \mathsf{Pr}_s(\phi) \in J\}$
- $Sat(\mathbb{L}_J(\phi)) = \{ s \mid \sum_{s' \in Sat(\Phi)} Irf_s(s') \in J \}$

How to check the probabilistic formulae

Consider the formula $\mathbb{P}_J(\phi)$

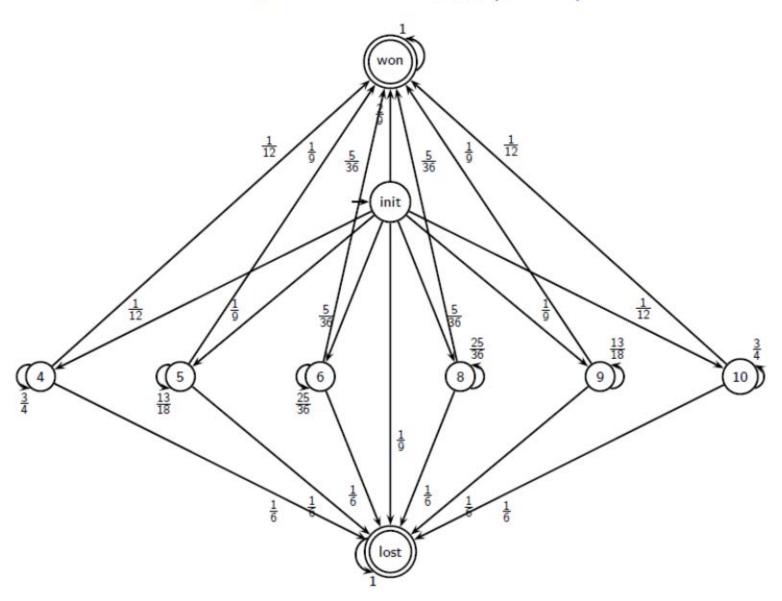
To compute the set $Sat(\mathbb{P}_J(\phi))$, it is sufficient to compute the probability $\mathbf{Pr}_s(\phi)$ for all s.

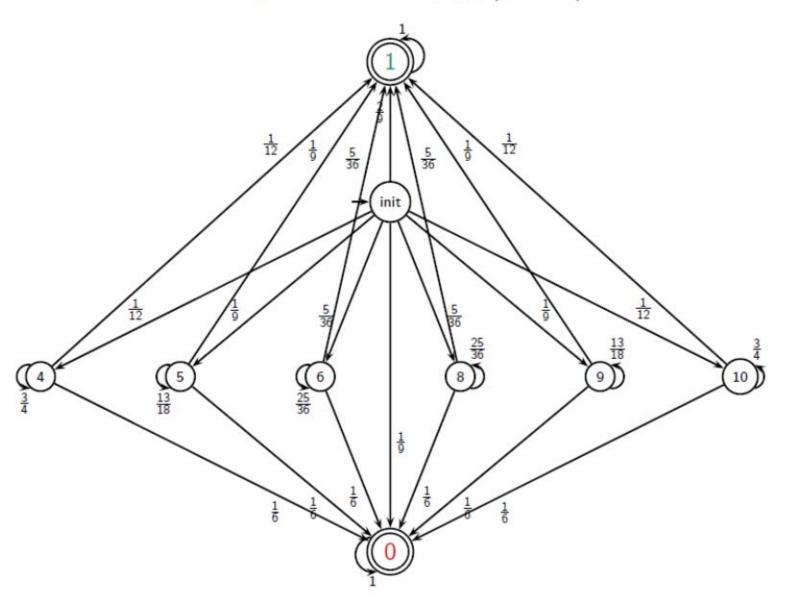
(In practice, we compute this number up to a given accuracy ϵ .)

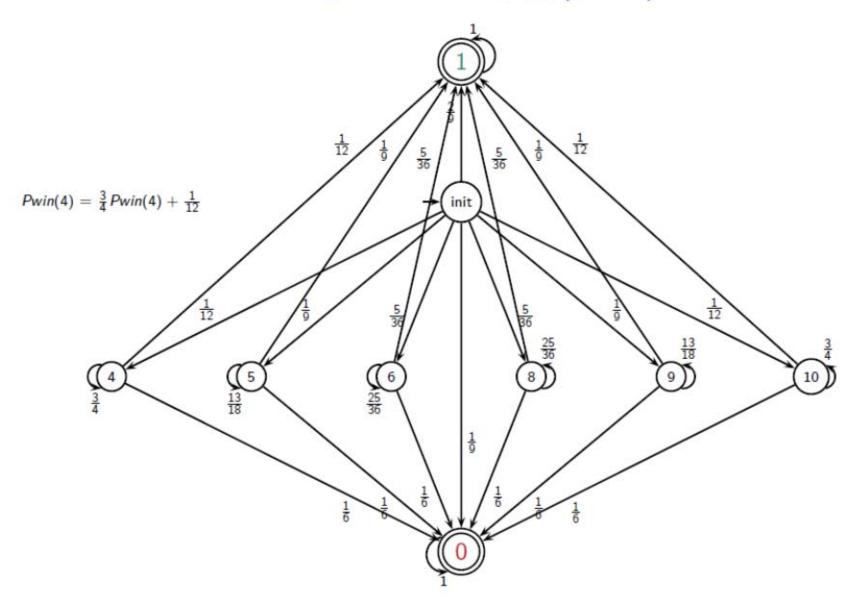
The case $\phi = \mathcal{X}\Phi$

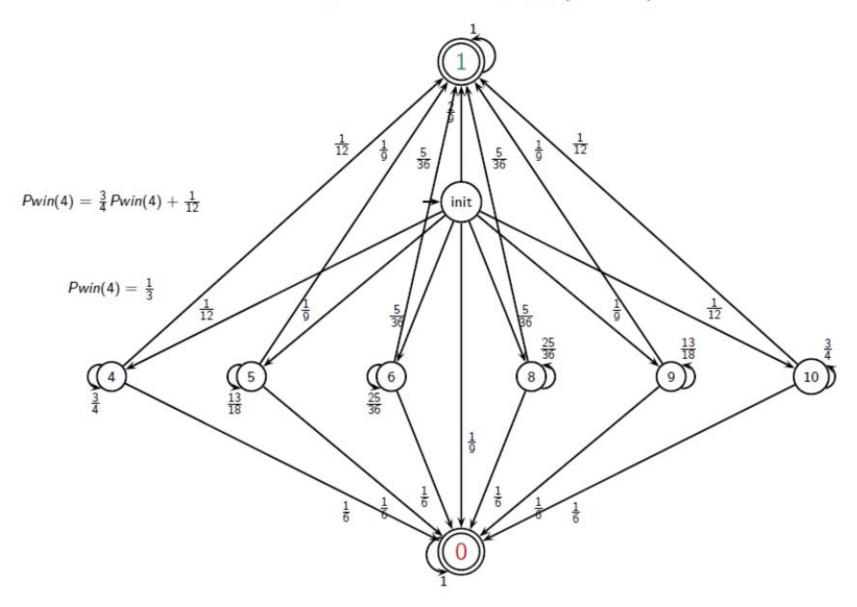
The set $Sat(\Phi)$ is computed recursively. It holds:

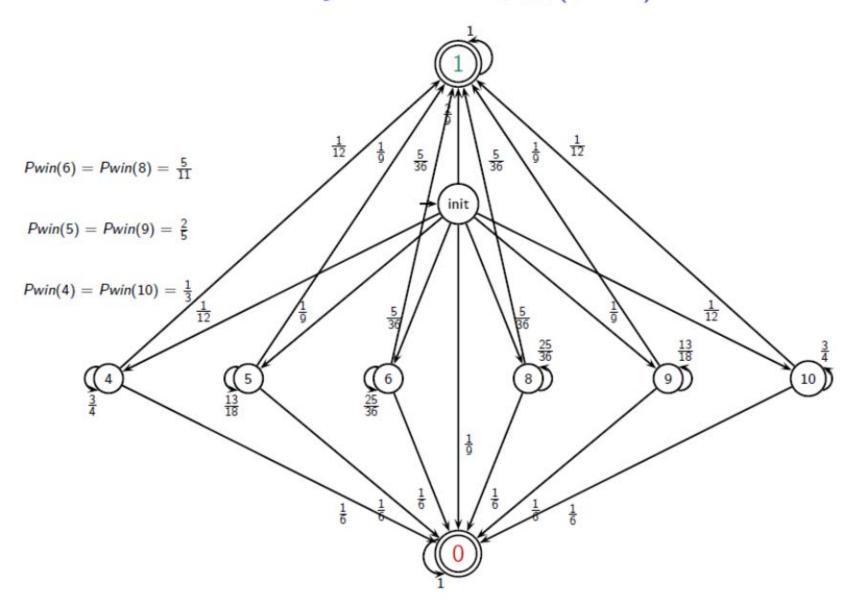
$$\mathsf{Pr}_s(\mathcal{X}\Phi) = \sum_{s' \in Sat(\Phi)} \mathsf{P}(s,s')$$

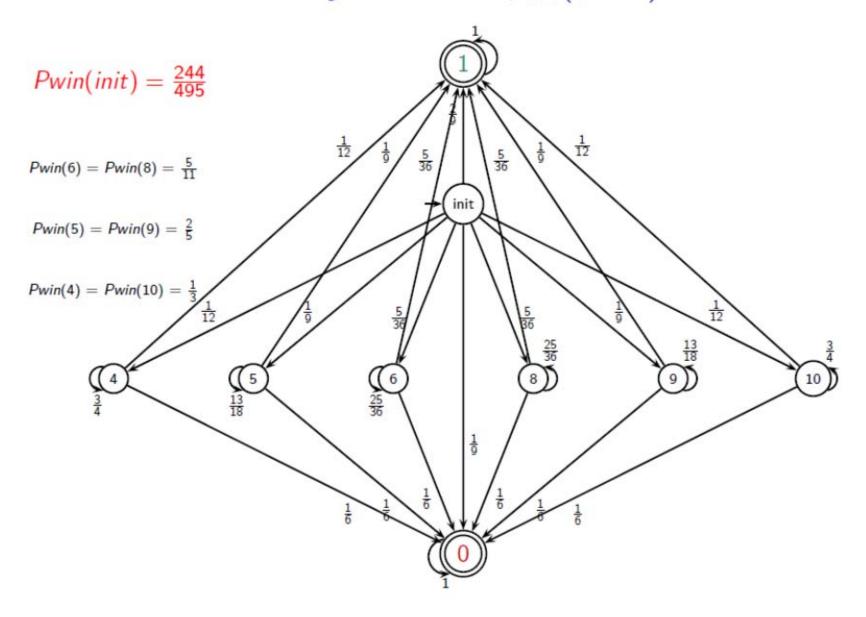












Reachability Probability

Given a DTMC $(S, P, \pi(0))$, a set of goal state $B \subseteq S$, what is the probability of reaching B eventually?

- Let x_s denote this probability starting in state s
- for $s \in B$, $x_s = 1$
- for $s \in S \setminus B$, it holds: $x_s = \sum_{t \in S \setminus B} \mathbf{P}(s, t) x_t + \sum_{u \in B} \mathbf{P}(s, u)$

In matrix form:
$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

where $\mathbf{A} = (\mathbf{P}(s,t))_{s,t \in S \setminus B}$
 $\mathbf{b} = (b_s)_{s \in S \setminus B}$ with $b_s = \mathbf{P}(s,B)$.

The matrix problem can be reduced by precomputing

$$S_{=0} = \{s \in S \mid \mathbf{Pr}_s(\lozenge B) = 0\}$$
 and $S_{=1} = \{s \in S \mid \mathbf{Pr}_s(\lozenge B) = 1\}$
and then restricting to $S_{=?} = S \setminus (S_{=1} \cup S_{=0})$

Reachability Probability

Given a DTMC $(S, P, \pi(0))$, a set of goal state $B \subseteq S$, what is the probability of reaching B eventually?

- Let x_s denote this probability starting in state s
- for $s \in S_{=1}$, $x_s = 1$, for $s \in S_{=0}$, $x_s = 0$.
- for $s \in S_{=?}$, it holds: $X_s = \sum_{t \in S_{=?}} \mathbf{P}(s,t) X_t + \sum_{u \in S_{=1}} \mathbf{P}(s,u)$

In matrix form:
$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

where $\mathbf{A} = (\mathbf{P}(s,t))_{s,\underline{t} \in S_{=?}}$
 $\mathbf{b} = (b_s)_{s \in S_{=?}}$ with $b_s = \mathbf{P}(s,S_{=1})$.

· The matrix problem can be reduced by precomputing

$$S_{=0} = \{s \in S \mid \mathbf{Pr}_s(\lozenge B) = 0\}$$
 and $S_{=1} = \{s \in S \mid \mathbf{Pr}_s(\lozenge B) = 1\}$
and then restricting to $S_{=?} = S \setminus (S_{=1} \cup S_{=0})$

Fixed point characterisation

We need to solve a more general problem: conditional reachability probability for two state sets C and B:

$$\Pr_{s}(C \cup B) := \Pr_{s}\{\sigma \mid \exists i. \forall j < i. \sigma[j] \in C \land \sigma[i] \in B\}$$

We define:

• $S_{=1} = \{s \mid \mathbf{Pr}_s(C \ \mathcal{U} \ B) = 1\}$ and $S_{=0} = \{s \mid \mathbf{Pr}_s(C \ \mathcal{U} \ B) = 0\}$, and use this to define $S_?$, \mathbf{A} and \mathbf{b} as before.

Theorem

The vector $(x_s)_{s \in S_7}$ with $x_s = \mathbf{Pr}_s(C \ \mathcal{U} \ B)$ is the unique fixed point of the operator $\nabla : (S_7 \to [0,1]) \to (S_7 \to [0,1])$ defined by:

$$\nabla(\mathbf{y}) = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$$

Further, for $\mathbf{x}(0) = \mathbf{0}$ and $\mathbf{x}(n+1) = \nabla(\mathbf{x}(n))$, we get:

- x(i) is increasing,
- $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}(n)$
- $\mathbf{x}_s(n) = \mathbf{Pr}_s(C \ \mathcal{U}^{\leq n} S_{=1}) \text{ for } s \in S_?,$

PCTL Semantics

Satisfaction relation for PCTL state formulas

Given a DTMC \mathcal{D} , state $s \in S$, the satisfaction relation \models is defined by:

- $s \models a \text{ iff } a \in L(s)$,
- $s \models \neg \Phi \text{ iff } s \not\models \Phi$,
- $s \models \Phi \land \Psi \text{ iff } s \models \Phi \text{ and } s \models \Psi$,
- $s \models \mathbb{P}_J(\phi)$ iff $\Pr_s(\phi) \in J$,
- $s \models \mathbb{L}_J(\Phi)$ iff $Irf_s(\Phi) \in J$,

Model checking steady state operator

Steady state operator $\mathbb{L}_J(\Phi)$:

- Assume Φ is computed recursively.
- Determine the set B of bottom strongly connected components, BSCCs.
- Compute the probability of reaching each BSCC B.
- For each B compute Irf restricted to B.
- finally, compute $lrf_s(\Phi)$ as follows:

$$Irf_s(\Phi) = \sum_{B \in \mathbf{B}} \left(\mathbf{Pr}_s(\lozenge B) \sum_{s' \in B, s' \models \Phi} Irf^B(s') \right)$$

using that Irf^B is the unique solution of $\pi^B = \pi^B \mathbf{P}^B$.

A maybe surprising summary

- 1 Unbounded until: we can start at the vector $(x_s)_{s \in S_?}$ with $x_s = 0$, and compute $\mathbf{x}(i+1) = \mathbf{A}\mathbf{x}(i) + \mathbf{b}$ until the difference is small.
- 2 If we stop at iteration k, the above delivers bounded reachability for bound k.
- 3 Steady-state: we can start at the initial distribution $\pi(0)$, compute $\pi(i+1) = \pi(i)\mathbf{P}$ until the difference is small

All of the three measures can be obtained by transient analysis.

Caution: this might not be the most efficient way!

Complexity

- Solving the equation systems is in polynomial time.
- Matrix vector multiplication is also in polynomial time.
- The computation will be repeated for each state sub-formula.
- Overall complexity:

polynomial in the size of \mathcal{D} , linear in the size of Φ , linear in the maximal step bound n.