


What we have seen so far

Model Construction Basics: Parallel Composition

Discrete Time Markov Chains
Probabilistic CTL Model Checking



Bisimulation

To = (S5, Acty, —»,...)

A relation R € S; x S, is a bisimulation, if
for all (s;.s5) € R and for all a € Act:

(1) ss =15} implies 2 s, =,s, such that (s).s5) R
(2) s =55, implies 2 s —;s; such that (s},s5) R

Bisimulation equivalence of 7; and 7 requires that
T and 7> can simulate each other in a stepwise manner

T, ~ T iff there is a bisimulation R for (7;.73) relating the initial states.




Bisimulation for DTMCs

D, =(S.P....) (now with state labels)

An equvialence relation R C S x S is a bisimulation, if

for all (s1.s) € R:

O L(s1) = L(s2),

@® P(s;. C) = P(s,. C) for each equivalence class C of R.

Two states s;.s, € S are bisimilar (s, ~ s5)
if there is a bisimulation R with (s1.s) € R.

PCTL-equivalence and ~ agree.




How to decorate a DTMC with actions? (1)

So far: A DTMC is a tuple: (S.P.7(0),...) where
e S is the set of states,
o P:OxS5— |0, 1] with } e
e 7(0) is the initial distribution.

How about: ’kmﬂz
An action-labelled DTMC is a tuple: (S.P.7(0)....) where 'lbi
1/2

e S is the set of states,
e P:SxActxS — [0,1] with )  P(s,a,s") =1 is the transition matrix,
e 7(0) is the initial distribution.

; . _ (e
P(s,s’) =1 is the transition matrix, ﬁ
)



o Synchronous product

1 :(SI.ACtl.*—'*]_....) 7> :(Sz.ACtz.“—-*z....)

The synchronous product 7; @ 75 is:
Ti®T = (51 X S, Act, —. )

where the transition relation — is given by:

v 3
S1 —1 Si N\ Sp —» 55

vE3

/ /
(51, %2) — (51, %)
action set Act is given by a function
+: Acty; x Act, — Act, (a.fB)— axp

for parallel systems with fully synchronous execution



Synchronous product

D1 = (51,Acty, Py;.. ) Dy = (S2,Act,. Py, . ..)

The synchronous product Dy @ D5 is:

DD, = (51 X Sy, Act, —, )

where the probability matrix P: is given by:

v

Pl(sl- (Y. S{) =p>0 A PQ(SQ. 3, 55) =g 1
P((s1,%),ax(3,(s;,5)) = pq

for parallel DTMCs with fully synchronous execution

o4 &4 /N1 /4



Interleaving operator

1/2

1= Lo ACtI. —1.501-AP1. 1) In— (Sz.ACtg. —9,502. AP2, L)
The composite transition system 7; ||| 75 is: (0
@
T ||| T2 = (51 % S Acty U Acta, —, (s01.502), AP, L) )
where the transition relation — is given by:
(1 / (} /
S1 719 N 725
v / (1 /
(s1.82) — (51, %) (s1,%2) — (51.5))

1/2

does not extend in an intuitive way to the DTMC setting!

o4 &4 /N1 /4



How to decorate a DTMC with actions? (2)

)
So far: A DTMC is a tuple: (S.P.7(0),...) where %
® S is the set of states,
e P:5x5—[0,1] with }___sP(s,s") =1 is the transition matrix, bmﬁ)
e 7(0) is the initial distribution. 12

Instead:

e S is the set of states,

e —C S xAct x (S —[0,1]), a probabilistic transition relation
with s — P implies ", P(s') = 1.
e 7(0) is the initial distribution.

This is the model of probabilistic automata, coined by Roberto Segala.




Interleaving operator for probabilistic automata @

)
D]_ = (S]_, Act;, —1, So1, )
D2 = (Sg, Acty, —», so2, )
The composite transition system D, ||| D, is given by:

D1 ||| D2 = (S1 x Sa, Acty U Acta, —, (so1, s02), AP,L)

where the transition relation — is given by:
5 X P
8l — ;
1 —* P1 . )2“: 2() di
9 51.2) — W2
<51‘ 52> — Ql < /¢ 1/ 1/4\1/
where Q1((s1,s5)) = Pi(s}) if s5 = s and 0 otherwise,

and Qz((s7.55)) = Pa(sy) if s; = s1 and 0 otherwise.




Synchronous message passing for probabilistic automata

concurrent execution with synchronization over all actions in Syn
D]_ — (S]_,A('jtl,—'-l,. % ) DQ = (SQ,ACtz,—*z,. s )
D1 |.Syn Dy, = (51 x S3,Act; UActy,—,...)

interleaving for every action o = Act; \ Syn: «
51 E*-]_ Pl 52 2'2 p2 -
(s1,52) = Q: (s51,92) — Q2
handshaking (rendezvous) for o € Syn:
si—1P1 A s =5 P
(51, 92) = P1P2
where P1P3((s1.s5)) = Pi(s7)Pa(s3).



apnel systems and shared variable systems

want to represent data-dependent concurrent systems with
e communication over shared variables
e synchronous message passing (channels of capacity 0)
e asynchronous message passing (capacity > 1)

shared
storage

This can all be encoded into

e transition systems
and synchronous message passing



How to decorate a DTMC with actions? (3)

So far: A DTMC is a tuple: (S.P.7(0),...) where

e S is the set of states,

e P:5x5—[0,1] with }___sP(s,s’) =1 is the transition matrix, (7
e 7(0) is the initial distribution. ﬂ

Instead:

e S is the set of states,

e P:5xS5—10,1] with " P(s,s’) = 1, the transition matrix,
e —— C S xAct xS, alabelled transition relation,
e 7(0) is the initial distribution.

This model goes back to Hans Hansson, with some twisting it is equipotent.



Probabilistic Automata ... Markov Decision Processes

Ok. What is the relation to Markov chains?

WEell, if we fix a resolution of the non-determinism we get a DTMC.
How do we fix?
However you like!

But, someone must decide which (s.a,P) €— to pick in state s.
True. This is what an adversary (policy or scheduler) is good for.

e An adversary is a function A : Pathsg, — Distr(Act x Distr(S))
such that A(o)((a.P)) > 0= last(c) —— P

e |t maps the entire history
to a distribution over possible choices (a,P) in the present state.

Adv denotes the set of all adversaries.

Note: The induced DTMC is an infinite object — states are paths.



PCTL revisited

Syntax

State formulas:

S :=true|a| Py A Dy | D | Py(o) -

where a € AP, J C [0,1] is an interval with rational bounds.

Path formulas:

=X | b U by | Dy US" D,

where n € N.



Semantics

Satisfaction relation for PCTL path formulas
Unchanged.

Satisfaction relation for PCTL state formulas
Given an MDP M = (5,—.7m(0), L), state s € S,
the satisfaction relation = is defined by:

e s =aiff a e L(s),
e s =0 iff s = P,
e s=EPAViffs=dand s =V,

o s =Py(0) iff Pri”d('w"q)(c,-‘)) < J for all adversaries A

Again, PCTL path formulas are measurable.



What adversary is really needed for what type of property?

e Random selection does not add anything.
e For bounded until, adversaries better count steps, not more. USD

e For unbounded until, adversaries without history suffice. U



Pixed point characterisation for DTMC

define:

Sa={s|Pes(CU B)=1} and these sets

5-0={s|Prs(CU B) =0} are obtained via the

5 5=5%151U55) underlying graph!
Theorem

The vector (Prs(C U B))scs is the unique fixed point of the operator
V:(5—1[0,1]) — (5 — [0,1]) defined by:

[ 1 s €84
(Vix))=<¢ 0 if s S5
! Zres P(s.t)x; else




Fixed point characterisation for PA

We define:
5= B and these sets
/ ind(M_,A) . .
S_o={s|VA:Ps (CU B) =0} are obtained via the
5 5=5%151U55) underlying graph!
Theorem

The vector (PrI™(C U B))ses is the least fixed point of the operator
V:(5—10,1]) — (S — [0.1]) defined by:

(V(x))s =4 0 ifse S5
MaX(s.aP)c— D res P(t) xt else

and similar for Pr™"

(instances of Bellmann equations)



Putting things together: PCTL model checking for PAs

Given a probabilistic automaton (S, —,7(0), L) and a PCTL formula &:
We determine Sat(®) as follows.

Bottom-up parse-tree traversal (Obvious for true, a, 1 A &5, =P.)

For P, (XP), Py (®1 U &2), Py (®1 U= d3):

in all cases, compute extremal probabilities Pr™" and Pr™
e X&: you work it out!

o ®; U=" &y apply V n times.
o ®&; U Py: apply V until convergence (value iteration)

or use linear programming, or . ...

and then check (statewise) whether Pr™" > | and Pr™> < u.



Complexity

e Overall complexity:
polynomial in the size of D,
linear in the size of P,

linear in the maximal step bound n.

Bisimulation
...can be lifted to probabilistic automata, such that:

State labels: PCTL-equivalence and bisimulation agree.
Transition labels: Bisimulation is a congruence for ||syp.

Both: Bisimulation is a congruence for ||syn
and implies PCTL-equivalence.



orism -

Case Studies

Case Studies PRISM Case Studies

- {sed
Eia:tfiirst::l PRISM has been used to analyse a wide range of case studies in many different
application domains. Below you can find more information and about a large
algorithms

number of these, Typically, vou can find descriptions of the case study and its

= Communication model(s), PRISM language source code and experimental results.

and multimedia

protocols We are always happy to include details of externally developed case studies. If you would like to
- Security contribute content about vour work with PRISM, or you want us to add a pointer to a publication
- Biological process about vour PRISM-related work, please contact us.
modelling
- Power Rando
mised distributed algorithms .

management C )/){\' (
systems

These case studies examine the correctness and performance of various randomised distributed

- Reliability studies aleorithms taken from the literature.
- CTMC benchmarks
- Game theory # Randomised self-stabilising algorithms (Herman) (Israeli & Jalfon) (Beauquier et al.)
. iliestarete # Randomised two process wait-free test-and-set (Tromp & Vitanyi) C
Saples « Synchronous leader election protocol (Itai & Rodeh) DT/V\
* Asynchronous leader election protocol (Itai & Rodeh)
# Randomised dining philosophers (Lehmann & Rabin)
¢ Randomised dining philosophers (Lynch, Saias & Segala)
# Dining cryptographers (Chaum)
# Randomised mutual exclusion (Rabin) /Y\D 3)
# Randomised mutual exclusion (Pnueli & Zuck)
# Randomised consensus protocol (Aspnes & Herlihy) (with Cadence SMV and PRISM) (See also

[KNS01a]) =l





