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What we have seen so far

Model Construction Basics: Parallel Composition
Discrete Time Markov Chains
PCTL Model Checking for DTMCs
Probabilistic Automata ... MDPs
PCTL Model Checking for MDPs
Parametric DTMC Model Checking
Probabilistic CEGAR for MDPs

Probabilistic Timed Automata



o Complexity

Overall complexity:
polynomial in the size of D,
linear in the size of P,

linear in the maximal step bound n.

Bisimulation
...can be lifted to probabilistic automata, such that:

State labels: PCTL-equivalence and bisimulation agree.
Transition labels: Bisimulation is a congruence for ||syp.

Both: Bisimulation is a congruence for ||syn
and implies PCTL-equivalence.



Case Studies

Case Studies PRISM Case Studies

- {sed
iia:tfiir:t::l PRISM has been used to analyse a wide range of case studies in many different
application domains. Below you can find more information and about a large
algorithms

number of these, Typically, vou can find descriptions of the case study and its

= Communication model(s), PRISM language source code and experimental results.

and multimedia

protocols We are always happy to include details of externally developed case studies. If you would like to
- Security contribute content about vour work with PRISM, or you want us to add a pointer to a publication
- Biological process about vour PRISM-related work, please contact us.
modelling
- Power Rando
mised distributed algorithms .

management C )/){\' (
systems

These case studies examine the correctness and performance of various randomised distributed

- Reliability studies aleorithms taken from the literature.
- CTMC benchmarks
- Game theory # Randomised self-stabilising algorithms (Herman) (Israeli & Jalfon) (Beauquier et al.)
. iliestarete # Randomised two process wait-free test-and-set (Tromp & Vitanyi) c
Saples « Synchronous leader election protocol (Itai & Rodeh) DT/V\
* Asynchronous leader election protocol (Itai & Rodeh)
# Randomised dining philosophers (Lehmann & Rabin)
¢ Randomised dining philosophers (Lynch, Saias & Segala)
* Dining cryptographers (Chaum)
# Randomised mutual exclusion (Rabin) /r\iD 3)
# Randomised mutual exclusion (Pnueli & Zuck)
# Randomised consensus protocol (Aspnes & Herlihy) (with Cadence SMV and PRISM) (See also

[KNSO1a]) <



Continuous-time Markov chains

Recall: Stochastic Process in continuous time
A stochastic process {X(t) | t € R} is a family of random variables. Notation:
X: = X(t)

Continuous-time Markov chain (CTMC)
Markov property: forall 0 =ty < t; < ... < t, < tpy1 and s; € S:

P(Xrn+1 — Spl-g | th = Sp. Xrﬂ_l — S Yy .,Xm = 50)
— P(Xl'n+1 — Sp+1 l X!’n — Sﬂ)

Time homogeneity:

= P(Xtp1—tn = $n | Xo = s0)



Notation

The transient probabilities at time t are, for j € S, t > O:

mj(t) :== P(X(t) =)

By the law of total probabilities, the transient probabilities
at any time t constitute a distribution over S.

The vector 7(t) can be obtained via the timed jump-probabilities:

pii(t) .= P(Xe=j|Xo=1i) = P(Xeyv =j | Xy, =) for any v.
pi(0) = 1 and py(0) = 0 if i % J

And, with P(t) = (pij(t))ijes, we have:

w(t) = 7(0)P(t)

However, P(t) cannot be obtained easily!



A generator for P(t)

Given a continuous-time Markov chain {X(t) | t € R}, with corresponding
probability space (€2, F, P), state space S = {0,1,...}, and i,j,s € S.

The infinitesimal generator matrix

For i,j € S, we define the infinitesimal generator matrix Q:

. pii(h) — p;(0)
9 = g, h

This leads to the Chapman-Kolmogorov equations (in matrix form):

dP(t)
dt

= P(t)Q = QP(t)



Continuous-time Markov chains

Graph-based definition
A continuous-time Markov chain is a tuple: (5.Q,7(0)) where
e S is the set of states,
e Q:5 x5 — R is the transition rate matrix such that: g;; > 0 if / # j and
qii < 0 with —qii =Y., qjj
e 71(0) is the initial distribution




Transient probabilities

For homogeneous CTMC:

drm(t)
dt

d’i‘Tj([‘) i :
= ZS mi(t)q; or in matrix form
=

m(t) Q

Symbolic solution

The transient probability vector is:

m(t) = m(0)eW! where et

|
.Mx
|3
)

Tiny Problem: (Qt)' is unstable to compute,
thus the infinite sum is not easily truncated.

Uniformisation
is the numerical method of choice. (see lecture notes.)



SIAM REVIEW (€) 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 1, pp. 3-000

Nineteen Dubious Ways to
Compute the Exponential of a
Matrix, Twenty-Five Years
Later”

Cleve Moler!
Charles Van Loan?

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involv-
ing approximation theory, differential equations, the matrix eigenvalues, and the matrix
characteristic polynomial have been proposed. In practice, consideration of computational
stability and efficiency indicates that some of the methods are preferable to others, but
that none are completely satisfactory.

Most of this paper was originally published in 1978. An update, with a separate bibliog-
raphy, describes a few recent developments.



Steady state probabilities

For a finite CTMC, the limit:

7 = lim 7m(t)
t—oC
always exists. It satisfies
. dm(t
lim i(t) = 0
t—oo dt

which implies




o DTMC: What to remember

inite — homogeneous — discrete-time Markov chains.
e Transient behaviour: w(n) = =(0) P".

e Stationary behaviour: @ = 7 P.

e Sojourn time is geometrically distributed: P(SJ = k) = p(1 — p)k.

Geometric Distribution with p = .4

D-“ T 1 I
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022
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0.00



CTMC: What to remember

Finite — homogeneous — continuous-time Markov chains.
Transient behaviour: m(t) = =(0) eV,
Stationary behaviour: 7 Q = 0.

Sojourn time is exponentially distributed: P(SJ <t) = 1 — e L.

Exponential Distribution with lambda =5

5 1 T T
Density function ———
"ﬁ.ﬁ Distribution function
!
4 N\
\
>
= 3r \
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e 2 1 \k
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Time
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CTMC: What to remember

Finite — homogeneous — continuous-time Markov chains.

Transient behaviour: m(t)

Sojourn time is exponentially distributed: P(SJ <t) = 1— e~

01 2 3 45 6 7 8 9 1 1 12 12 14 15

m(0) eV,
Stationary behaviour: 7 = ]
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What comes next

We are going to discuss

Model Construction, and
Model Checking
for CTMCs



CTMC with labels

We equip states of CTMC with labels to identify state properties:

e AP denotes the set of atomic propositions
e ACTMC is a tuple C = (S.R,7(0), AP. L) where L : S — AP.

L(s) specifies properties hold in state s.



Continuous Stochastic Logic

Syntax

State formulas:
G :=true|a| P ANDy | 2D | Py(o) | Ly(P)

where a € AP, J C [0,1] is an interval with rational bounds.
Path formulas:

=X | dU' b,

where n € N, and | € R=° denotes an interval.



Specifying properties using CSL

We consider a triple modular redundant system:

up3 up>




Some CSL properties

In the steady state, the probability that the system is in state s is at

most p,
[

The transient probability at time t in state s’ meets the bound > p,

4

The probability of reaching down state within 10 time units after having
continuously operated with at least two processors is at most 0.01

(2

In steady state, with probability at least 0.9, the probability that the
system will not go down within 10 time units is at least 0.8  up;

¢ 19

50y (R0 (& b




Availability properties using CSL

up): steady-state availability

({}[t tlyp): instantaneous availability at time t
(‘13'2/{[lr ﬂup) conditional instantaneous availability at time t

,(Olt:t] up): interval availability,
LJ(PJ(DH t1)): steady-state interval availability
P (dUETIL (up)): conditional time-bounded steady-state availability



Semantics

Satisfaction relation for CSL state formulas
Given a CTMC C = (5.R.7(0), AP, L), state s € S, the satisfaction relation =
is defined by:

e s =aiff ae L(s),

o s =0 iff s = O,

e s=bAViffs=dPands =V,
o s =P,(0) iff Pry(o) e J,

o s =1L,(P) iff Tu(Sat(d)) € J.




Satisfaction relation for CSL path formulas

Given a CTMC C = (5.R.7(0), AP. L), path o, the satisfaction relation = is
defined by:

o 0= X0 iff o[1] = ® and §(c70) € I,
o)

1 date ¢
JJI. |.I SR 5 ll/.'-"!:-n Y T {. Se
41 F — =

dlo[ - [ -] |oV

Measurability of CSL events

Let C = (S,R, 7(0),AP,L) be a CTMC and s € S, then, for each CSL path
formula ¢, the set Paths(¢) := {0 € Paths(s) | ¢ = ¢} is measurable.



Model checking steady state operator

Steady state operator L (®): very similar to the DTMC case

e Assume @ is computed recursively.
e Determine the set B of bottom strongly connected components, BSCCs.

e Compute the probability of reaching each BSCC B.

e For each B compute 7 restricted to B.

e Finally, compute 75(®) as follows:

#s(®)=) [Prs(0B) ) #5(s)

BecB s'eB,s'=¢

using that 78 is the unique solution of 72QB = 0.



The computation of Pr (o)

The case ¢ = X'¢
The set Sat(®) is computed recursively. Let | = [a, b], it holds:

Pro(X'®)=Pr(a< Sk <b) ) P (s,s’)

s'cSat(®

s (E—E(SJE _ e E(s)b ) Z P(s.s')

s'eSat(P)

For | = [0,2¢), it simplifies to:

Pro(Xo)= > Pss)

'{:Sat



The computation of Pr.(¢)

The case 6 =d U' V

The vector Prs(Q(B)) : S x | — [0,1] is the least fixed point of the
higher-order operator V : (S x I — [0,1]) — (S x I — [0, 1]) which is defined
as follows: V(F)(s,/) equals

b
/ E(s)e E) . N " P(s,s") - F(s', 1 & t) dt if s¢ B
0 s’'eS
e E(s)a +f E(s)e EC). N "P(s,s)- F(s'. 1 = t) dt if s € B.
0 s'eS

where | = [a, b].

Luckily, we do not have to solve these integral equations.

Instead, there is a neat way of reducing everything to the computation of m(a)
and of (b — a)

— the latter in a CTMC that is initialised with 7(a)




Complexity

Solving the equation systems is in polynomial time.
Matrix vector multiplication is also in polynomial time.
The computation will be repeated for each state sub-formula.

Uniformisation requires matrix vector multiplications in the order of gt
where g is the maximal exit rate appearing.

Overall complexity:
polynomial in the size of M,
linear in the size of @,

linear in gt.



What comes next

We are going to discuss

Model Construction, and
Model Checking
for CTMCs



terleaving operator for transition systems
1=, ACtI. —1.501-AP1. 1) T =5z, ACtg. —9,502. AP2, L)
The composite transition system 77 ||| 75 is:

Ti||| T, = (51 x S2, Acty U Acta, —, (so1.502). AP. L)

where the transition relation — is given by:

('l / i} /
51 71 9 5 72 5
¥ Ck

(s1,92) = (51, %2) (51, %2) — (51, %))

atomic propositions: AP = APy £ AP,

labeling function: L((s1,s5)) = Li(s1)U La(sp)



Interleaving operator for CTMC
M; =(5,Qy,...) M; =(5,Q,,...)

The composite CTMC My ||| M3 is:
M] |HM2 = (51 % 55, R, )*

where the generator matrix Q is given by:

A / A /
51 —1 54 H /25
A A
(s1, %) = (s1, %) (s1,%) = (51. %)
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Interleaving for CTMCs
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o Synchronous product

N = (Si,Act;; Pijs) Dy = (S2,Act,. Py, . ..)

The synchronous product Dy @ D5 is:
DD, = (51 X Sy, Act, —, )

where the probability matrix P: is given by:
Pl(Sl, (v, 5{) =p > 0 A pQ(SQ,_.:Tj. 55) =q > 0
P((s1,%).ax* 3, (s,5)) = pq

for parallel DTMCs with fully synchronous execution




Connecting DTMC and CTMC Composition

. (1—=p)(1—q)
Synchronous Composition for DTMCs A
Dp © Dy
1—p 1—g
p q
Interleaving for CTMCs
M| M
® ®




Connecting DTMC and CTMC Composition'

e For a given time step A a discretised exponential distribution
Is a geometric distribution.

e In the limit A — 0 a geometric distribution
Is an exponential distribution.

e This can be lifted to MCs:
For each CTMC M and time step A, there is discretised DTMC D, .

Lemma
Let

e M=(5,Q,5) and M’ =(5".Q.s}) be two CTMCs,
e Dp. D\ be the corresponding discretised D TMCs for time step A,

e Q! be the generator matrix of M ||| M’,

e PL be the probability matrix of Dp © D) .
Then,
(P —1)/A

Q' = lim
A—0



W to decorate a DTMC with actions? (3)

o far: A DTMC is a tuple: (S,P.7(0),...) where
® S is the set of states,
o P:OxS5— |0, 1] with } e
e 7(0) is the initial distribution.

P(s,s’) =1 is the transition matrix,

Instead:

e S is the set of states,

e P:5xS5—10,1] with )" P(s,s") = 1, the transition matrix,
o — C S x Act x S, a labelled transition relation,

e 7(0) is the initial distribution.

This model goes back to Hans Hansson, with some twisting it is equipotent.



How to decorate a CTMC with actions?

So far: A continuous-time Markov chain is a tuple: (S.Q.=(0)....) where
e S is the set of states,
e Q:S5 xS — R isthe generator matrix such that ¢; >0
e 7(0) is the initial distribution

Instead: An interactive Markov chain is a tuple: (S.Act,— ,Q.=(0)....)
where

e S is the set of states,

e Q:SxS— R is the generator matrix such that g; >0
e —: S Act xS, alabelled transition relation

e 7(0) is the initial distribution



Interleaving operator for interactive Markov chains

I; = (51.Q1,- ) T2 = (52,Q2,...)

The composite transition system 77 ||| Z5 is:

Zi|||Za = (S1 x Sa, Acty U Acty, ...)

where — and Q are given by:
(1 / ¥ /
51 71 % N 725
(51, %) = (s], ) (s1,9) = (s1,5))
A A
51 715 52 23>




r§nous message passing for transition systems

1=(51.ACt1.—*1....) E:(Sz.ACtz.'—'z....)

The concurrent execution with synchronization over all actions in Syn is:
17y llsyn 72 = (Si S>. Act; U Actp, —., .. )

where Syn C Act; n Act, set of synchronization actions

interleaving for o = Act; \ Syn:
(1 (l
51 —1 5] S —2 S
x (&

<51,52> —3 <Si 52) <51.52> — <51.S£>

handshaking (rendezvous) for « = Syn:
st =15, A S — 8




Synchronous message passing for IMCs
I]_I(S]_.ACtI.—*]_....) 12:(52.AC1:2.'—'2....)

The concurrent execution with synchronization over all actions in Syn is:
11 |lsyn L2 = (54 S>.Act; U ACtg.—....)

where Syn C Act; n Act, set of synchronization actions

interleaving for o = Act; \ Syn:

o / A / A /
51 71 31 2 72 3 51 71 31 2 72 3

(s1,92) = (s1,%2) (s1,%) = (s1,%) (s1.52) 4 (s1,) (s1.%) 2 (s1,5)

handshaking (rendezvous) for o = Syn:

(& /

)
51'—>151 N S —9 S

51, 5) — (5, &
1:52




Agenda

Add Rewards (or Costs) ?\—\ i}
Go beyond exponential distributions \
Develop abstraction techniques __/ \ / N\
Tt
Look into continuous dynamics L,TS/ \ -~
D

Integrate PA and IMC
Tools, Tools, Tools

Applications, Applications, Applications, Applications, Applications,
Applications, Applications, Applications, Applications, Applications
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l CADP methodology

Behavioral models Sub-components

= | of the architecture

I Time
| information

- suhsatuf lntar'a:tlm mr;:;::
efamems
Choice of the venficationstrategy mnﬁlTuDr?ne
(model-checking, equiivalence-checking, co-simulation... ) relevant delays

=
x cumpnsitmn

Continuous
time Markov
chaln (CTMC)
to analyze

Formal Performance
modeling evaluation

Nicolas Coste
INRIA Rhone-Alpes and STMicroelectronics 8




From LOTOS to Markov chains

LOTOS
formal model

!

LOTOS
sub-system
toverify

——,

I Time
information

Cumulative Distribution Function (CDF)

D efinition of the
relevant delays

LOTOS
model of the

relevant delays

Sl
composition
strateqgy

{ BCG_MIN

Continuous
time Markoy

chain (CTMC)
to analyze

Performance

evaluation

i R,
|dentify the
distribution of
the delays
0

time

rate a
rate &
= - :;b
approximation e
of the delays rate e
ratey

any type of general distribution can be fitted
by a
phase-type distribution

Nicolas Coste
INRIA Rhéne-Alpes and STMicroelectronics 13



Example: a simplified xSTream queue

PRODUCER QUEUE CONSUMER
LO TO S rate o PUSH_RQ ﬁ%%léf POP_RQ rate
MODE L PUSH RSP PUSH_RQ PUSH_RSP POP_RSP POP RSP  POP RQ

NO

Time needed to process a

o ~exp PUSH |
— -~

PUSH_RG PUSH_RG PUSH_R.Q : PUSH_RQ

' PUSH _RSP PLSH_RSP PUSH_RSP ; PUSH_RSP
:
v 1
H HH

0 ! ! | L time
i i POP_RSP ! : ‘ - POP_RSP
POP_RQ | E POP_RQ
— i ~exp "
Time needed to
process a POP Nicolas Coste

INRIA Rhéne-Alpes and STMicroelectronics 14



Example: a simplified xSTream queue

SYSTEM

LOTOS
MODEL

Time needed to
process a PUSH
and
time needed to
process a POP

PRODUCER QUEUE
PUSH POP
—- —
ratea PUSH_RQ QU EU E POP_RQ rate p
PUSH_RSP MODEL POP_RSP
PUSH_RSP PUSH_RGQ - Q F‘DP RSP PCOP_RQ
<O
Ny 2 *f'»
PUSH_STOP PUSH_START Qﬁ" \d) % PORP_STOP POP_START
KA
rate A rate i rate rate p
rate A rate p

Cumulative Distribution Function (CDF)

OO OO0

Erlang distribution

Nicolas Coste

INRIA Rhéne-Alpes and STMicroelectronics 15



The xSTream Case-Study

—
PE  Processing Element « [Two flows from PE 1 to
NoC Network on Chip
BL BackLog Memory another PE, say PE 4.

Fc  Flow controller
—) xSTream queue

Time to remove an element
from a Pop queue ?

- Available elements — Pop done
- No element — Pop blocked

J = A Pop latency close to its

minimal value ensures that
the communication
i architecture fulfills its task

System Bus

Lﬁ xSTream

Nicolas Coste |
INRIA Rhéne-Alpes and STMicroelectronics Grenoble 23




The xSTream Case-Study : results

-

Pop operation mean latency
o

0 02 04 06 08 1
Probability of insertion into backlog
« Experiments (a) and (a’) : credit protocol
worst case | i |

!
The production/consumption rate in
+
Iiv

experiment (a’) are greater than in 3
Nicolas Coste

INRIA Rhéne-Alpes and STMicroelectronics Grenoble | 26

experiment (a) A
« Experiment (b) : a better credit protocol @
use
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