Unifying Models
of Data Flow

Microsoft:
Research Marktoberdorf, August 2010

http://research.microsoft.com/c/1040

Unifying...
Memory

— shared/private, weakly/strongly consistent

Communication

— synchronised/buffered, reliable/unreliable

Allocation
— dynamic/nested, disposed/collected

Concurrency
— threads/processes, coarse/fine-grained

Reference

Unifying Models of Control

Flow

 lan Wehrman, C.A.R.
Hoare and Peter
O’Hearn. Graphical
Models of Separation
Logic. In Engineering

Methods and Tools for

Software Safety and

Security, M. Broy et al.

(eds.), 10S Press, pp.
177-202, 2009.

Graphical Models of Separation Logic

Ian Wehrman®, C. A. R. Hoare®, Peter W. O’Hearn®

*The University of Teras at Austin, UUSA
b Microsoft Hese mbridge, UK
=Queen Mary University London, UK

Abstract

Graphs are used to model control and data flow among events occurring in the
execution of a concurrent program. Cur treatment of data flow covers both
shared storage and external communication. Nevertheless, the laws of Hoare
and Jones correctness reasoning remain valid when interpreted in this general
maodel.

Key words: concurrency, formal semantics.

1. Introduction

In this paper, we present a trace semantics based on graphs: nodes represent
the events of a program’s execution, and edges represent dependencies among
the events. The style is reminiscent of partially ordered models [11, 16], though
we do not generally require properties like transitivity or acyclicity. A linear
trace can be represented by a graph in which there is a chain of arrows between
every pair of nodes. But we also allow any node to have mutually independent
predecessors on which it depends, and successors which it enables.

Concurrency and sequentiality are defined using variations on separating
conjunctions. Whereas the conjunction in the original separation logic partitions

The behaviour of a resource

e ...is recorded as a trace of all events in
which it has engaged...

— drawn as boxes

 ...with direct dependencies between
them...

— drawn as arrows —>
source target

— target cannot occur without/before source

« ...along which data may flow

VS

A sequential trace

OS

The sequential design pattern

VS

Defined in relational algebra as:

v(s — s)* 0O

A Graph is

the carrier set of events

C X
> a relation between events
S, C, X, 9, ... (-
a collection of subsets of events

m and n are relations

e(m)f means (e, f) € m

m n is their relational composition
—e(mn)f 2 3g.e(m)g &g (n)f

the identity relation is defined by
—-e(ld)f 2 (e=1)

the universal relation is defined by
—elUf 2 true

Relational operators

« Converse: e—~f 2 f— e, or:
e(mY)f 2 f(m)e

« Kleene star: < 2 (—-)*, where

—(mM* =l dumMu(mMmu(mmm)uU ...

(
— (M =(Muimmuimmm)uU ...

Relational properties

« If — is acyclic, < is antisymmetric:
<nNn> < Id
or, in predicate calculus:
Vef.e<f & e>f = e=f°

* If mis a (partial) function then:
mY mc Id
or, in predicate calculus:
ve,f,goe(m)f & e(mg = f=g

A Resource

 ...is represented by the set of events
in which it has engaged

« We use set-valued variables to range
over resources

—-c,d, ... (channels)
-X,, ... (variables)
-1, s, ... (etc.)

Sets and relations

A set of events s is represented as a
relation: e(s)f 2 ec€s & e=f

Set intersection corresponds to relational
composition: s Nt = st

(s — t) is a relation containing all arrows
with source in s and target in t

We can lift relations to sets:
sm]t 2 Vef.ecs & fet = e(m)f

VS

« Each event in s has at most one
successor and one predecessor :

 Dependency is a total order on s:

A sequential trace

OS

(s—s—s) < ld and (s—s<s) < Id

(s —s)*U(s—->s)*=sUs

Sets of events

Vv allocate
= assign
| output

U acquire

dispose

fetch

N

re

out

edse

Conjunction

« Suppose w is a data value. Then:

X X X X

2 =

t
L
t
L
t
L

ne set of all assignments to x
ne set of all fetches of x

ne set of assignments of w to x
ne set of fetches of w from x

ne set of all allocations of s

ne set of all disposals of s

Allocation and disposal

 Allocation is the first event of a
resource s: vs [£] s

e Each resource s has one allocation
event: lvs| = 1

« Disposal is similar

Implementation

« Allocation may be: « Disposal may be:

— global, — from stack,
— on stack, or — by mark-and-sweep
_ on heap garbage collection,

— by operating system,
— by switching off, or

— by ultimate disposal
of hardware

A semaphore s

0S

>

s

sfl

s

sl

VS

N N N N N’

A parameter X

VX = W
X =W
X =W
X =W

X —>X<Xx c Id

X - X c {(e,f)| Iw. e € (vx := w)
&fe(x=:w)}

Fan-in

Concurrent Resource

Publication

pub(v)

read(v)

read(v)

read(v)

pub(v’)

Assignment

The token game (1)

The token game (2)

The token game (3)

The token game (4)

The token game (5)

X =V >XZ=W-—Q

A variable

vX > x:=3 > X ;=4 > OX

A closed triangle (1)

—_—> L= >:=U6\>

<~

c (=)-(=)-(=Ud-(=) < C(

e similar to: (:=)—(=:)<(;=)

N

A closed triangle (2)

—_—> L= >:=U6\>

<~

Communication

C

C

13
c?

3

C

17
c?

/

19
C?

9

Sequential outputs/inputs

13 7 19
c? > C? > C?

C > C > C

3 / 9

cl3

Channel

/

vC

3

—>

C

c?’3

17
>l ¢?

/

\\

OC

c!9
)

c?’9

Closed triangles

Closed rectangles

Singly-buffered channel

Zero-buffered channel

—>

—>

A

N

A lossy channel

! > | > |

N

? > 7?

For a lossless channel,

| — ? js a total relation on outputs
1 -2 <

veel.ife?. e-f

A stuttering channel

! S

PN

? >l ? > ?

For a non-stuttering channel,

| — ? is a (partial) function
?7—1 -7 c?

A fraudulent channel

! S

NN

? >l ? > ?

For a non-fraudulent channel,
| — ? is surjective
2 = 2 19

vee?.3fel.f-e

A confusing channel

! > | > |

VN

? > 7?

For a non-confusing channel,
l — 7 is injective
-7 1 c Id

Vee'f.e~f & e—~f = e=¢’

An overtaking channel

An order-preserving channe]

] S —— —[

=) -2 =1 @272

New channels from old

oo
=N

?

Take two channels...

AN

L L

...connect them...

TR

> | S >

$O') cy,lz

v

N\

> 7 > ?
> |
\\
?

b

... abstract internal events...

ATRTRRN

V

v

NI

... result: a single channel

4

—>

\

?

\

—>

AN

?

0

\

/

Two singly-buffered channels...

VAN

...connected...

/TN

N/ N/ W

v ? ? ?
- — —

y | | '

\ N N

Acy) cy,lz

... doubly-buffered channel

JAVAVZARN

74 N
? ? ? O
|

— > — > —

| | O

v
N pA\

NVAYAW,

? >l ? >l ?

... doubly-buffered channel

[LN

Z N
? ? ? O
|

— > — > —

| ! O

v
N pA\

NV AW,

? >l ? >l ?

... doubly-buffered channel

ANV

Zero-buffered channel

—>

—>

A

N

Exercises

« What is the effect of linking a zero-
buffered channel to another channel?

« Implement a singly-buffered channel
by means of two semaphores to
synchronise input with output, and a
variable to hold the content of the
buffer.

T1:

T2:

T3:

Threads

fork ——

> O
A 4
> join

An atomic assignment (1)

——| atomic(X := xX+y) ——

An atomic assignment (2)

——| atomic(X := xX+y) ——

>l X =: 3

>y =4

NS

An atomic assignment (3)

——| atomic(X := xX+y) ——

~

/] N\

>l X =: 3

A shared variable (1)

VAVAN

X =:6

A shared variable (2)

A shared variable(3)

T1

> X =4

/_’_\x64

T27x

NERVAN

Weakly consistent memory

« as implemented in multi-core
architecture...

« ...complicates shared variable
behaviour...

e ...both in definition and in use

T1

T2

Litmus test

Litmus test

T1

T2

Litmus test

T1

T2

Litmus test

T1

T2

Relaxed triangle

—> L= = U 0 —>
e g
—> = |——-———— — 3 '=UDd

Litmus test

T1

T2

Memory barriers

T —| x:

T2

Memory barriers

T —| x:

T2

Memory barriers

=UOUB

Memory barriers

T —| x:

T2

: —

¢alid

Memory barriers

Tl —| x:=1}—>| x:=2 }—
T2 > x =1 }F—| x =:

2 >

Xinvalid

Memory barriers

Tl —| x:=1}—>| x:=2 }—
T2 > x =1 }F—| x =:

2 >

Xinvalid

Cache (1)

T1 cache—— x]:=4—>:x]:=3: >:x]:=6:—>

Cache (2)

T1 cache——| x,

A second cache

T1 cache——

T2 cache——

Partial store ordering

T1 cache—| x; =4 |——! x,:=3 | > X, =

T2 cache——| x; =3 —— x,:=4 3| x,:=6

Total store ordering

T1 cache——

T2 cache——

X =:4 X =:3 X=:06
=4 — x; =3 » x, =6 —>
_____ i
—>:x2=4:—>x2:=6 >
X =:3 X =:4 X =:6

Summary

« Data flow is a primitive concept,

— adequate to describe the dynamic
behaviour of many kinds of computing
resource.

« Relational calculus,
—illustrated by labelled graphs,

— provides a general framework adequate
for a unifying theory of data flow

Acknowledgements

* Jay Misra

« Bernhard Mdller

* Joargen Steensgaard
 Viktor Vafeiadis

« Peter Hofner

« And especially John Wickerson

