
Unifying Models
of Data Flow

Tony Hoare

Marktoberdorf, August 2010

http://research.microsoft.com/c/1040

Unifying…
• Memory

– shared/private, weakly/strongly consistent

• Communication

– synchronised/buffered, reliable/unreliable

• Allocation

– dynamic/nested, disposed/collected

• Concurrency

– threads/processes, coarse/fine-grained

Reference

Unifying Models of Control
Flow

• Ian Wehrman, C.A.R.
Hoare and Peter
O’Hearn. Graphical
Models of Separation
Logic. In Engineering
Methods and Tools for
Software Safety and
Security, M. Broy et al.
(eds.), IOS Press, pp.
177-202, 2009.

The behaviour of a resource

• ...is recorded as a trace of all events in
which it has engaged...

– drawn as boxes

• ...with direct dependencies between
them...

– drawn as arrows

– target cannot occur without/before source

• ...along which data may flow

source target

A sequential trace

δsssss

The sequential design pattern

sss

Defined in relational algebra as:

(s → s)+ δ

A Graph is

s, c, x, , …

the carrier set of events

a relation between events

a collection of subsets of events

m and n are relations

• e (m) f means (e, f) ∈ m

• m n is their relational composition

– e (m n) f ≜ g. e (m) g & g (n) f

• the identity relation is defined by

– e (Id) f ≜ (e = f)

• the universal relation is defined by

– e U f ≜ true

Relational operators

• Converse: e ← f ≜ f → e , or:

e (m∪) f ≜ f (m) e

• Kleene star: ≜ (→)* , where

– (m)* = Id ∪ (m) ∪ (m m) ∪ (m m m) ∪ …

– (m)+ = (m) ∪ (m m) ∪ (m m m) ∪ …

Relational properties

• If → is acyclic, is antisymmetric:
(∩) Id

or, in predicate calculus:
e,f. e f & e f e = f

• If m is a (partial) function then:
m∪ m Id

or, in predicate calculus:
e,f,g. e (m) f & e (m) g f = g

A Resource

• ...is represented by the set of events
in which it has engaged

• We use set-valued variables to range
over resources

– c, d, … (channels)

– x, y, … (variables)

– r, s, … (etc.)

Sets and relations

• A set of events s is represented as a
relation: e (s) f ≜ e ∈ s & e = f

• Set intersection corresponds to relational
composition: s ∩ t = st

• (s → t) is a relation containing all arrows
with source in s and target in t

• We can lift relations to sets:
s [m] t ≜ e,f. e ∈ s & f ∈ t e (m) f

A sequential trace

• Each event in s has at most one
successor and one predecessor :

(s←s→s) ⊆ Id and (s→s←s) ⊆ Id

• Dependency is a total order on s :
(s ← s)* ∪ (s → s)* = s U s

δssssνs

Sets of events

allocate

:= assign

! output

acquire

dispose

=: fetch

? input

release

Conjunction

• Suppose w is a data value. Then:

x := the set of all assignments to x

x =: the set of all fetches of x

x := w the set of assignments of w to x

x =: w the set of fetches of w from x

s the set of all allocations of s

δs the set of all disposals of s

Allocation and disposal

• Allocation is the first event of a
resource s: s [] s

• Each resource s has one allocation
event: | s| = 1

• Disposal is similar

Implementation

• Allocation may be:

– global,

– on stack, or

– on heap

• Disposal may be:

– from stack,

– by mark-and-sweep
garbage collection,

– by operating system,

– by switching off, or

– by ultimate disposal
of hardware

A semaphore s

ssss δss

s → s (ν →) ∪
(→) ∪
(→) ∪
(→ δ) ∪
(ν → δ)

A parameter x

x := w

x =: w

x =: w

x =: w

x → x ← x Id
x → x {(e,f) | ∃w. e ∈ (x := w)

& f ∈ (x =: w) }

Fan-in

Concurrent Resource

δ

Publication

pub(v')

read(v)

read(v)

read(v)

pub(v)

Assignment

x := w

x =: v

x =: v

x =: v

x := v

The token game (1)

x := w

x =: v

x =: v

x =: v

x := v

x := w

x =: v

x =: v

x =: v

x := v

The token game (2)

The token game (3)

x := w

x =: v

x =: v

x =: v

x := v

The token game (4)

x := w

x =: v

x =: v

x =: v

x := v

The token game (5)

x := w

x =: v

x =: v

x =: v

x := v

A variable

x → x (→ :=) ∪ (→ =:) ∪
(:= → :=) ∪ (:= → =:) ∪
(=: → :=) ∪ (=: → :=) ∪
(→ δ) ∪ (:= → δ) ∪ (=: → δ)

x := 4

x =: 3

x =: 3

x := 3 δx

x =: 4

x

A closed triangle (1)

• (:=)→(=:)→(:= ∪ δ)←(:=) (:=)

• similar to: (:=)→(=:)←(:=) (:=)

e g

f

:= ∪ δ

=:

:=

A closed triangle (2)

• (:=)→(:= ∪)←(=:)←(:=) (:=)

e g

f

:= ∪ δ

=:

:=

Communication

c!3

c?3

c!7

c?7

c!9

c?9

Sequential outputs/inputs

c!3

c?3

c!7

c?7

c!9

c?9

Channel

c!3

c?3

c!7

c?7

c!9

c?9

c δc

Closed triangles

!

?

!

?

!

?

δ

Closed rectangles

!

?

!

?

!

?

δ

Singly-buffered channel

!

?

!

?

!

?

δ

Zero-buffered channel

!

?

!

?

!

?

δ

A lossy channel

!

?

! !

?

For a lossless channel,
! → ? is a total relation on outputs
! ! → ? ← !

e ∈ ! . f ∈ ? . e→f

A stuttering channel

!

? ?

!

?

For a non-stuttering channel,
! → ? is a (partial) function
? ← ! → ? ⊆ ?

A fraudulent channel

!

? ?

!

?

For a non-fraudulent channel,
! → ? is surjective
? ? → ! ← ?

e ∈ ? . f ∈ ! . f→e

A confusing channel

!

?

! !

?

For a non-confusing channel,
! → ? is injective
! → ? ← ! ⊆ Id
∀e,e’,f . e→f & e’→f e = e’

An overtaking channel

! !

? ?

An order-preserving channel

(! → !)+ → ? = ! → (? → ?)+

!

?

!

?

New channels from old

!

?

!

?

!

?

δ

Take two channels...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ

...connect them...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ

... abstract internal events...
! ! !

δ

? ? ?

δ

... result: a single channel
!

?

!

?

!

? δ

!

?

!

?

!

?

δ

Two singly-buffered channels...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ

...connected...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ

... doubly-buffered channel
!

?

!

?

!

? δ

!

?

!

?

!

?

δ

... doubly-buffered channel
!

?

!

?

!

? δ

!

?

!

?

!

?

δ

... doubly-buffered channel
! ! !

δ

? ? ?

δ

Zero-buffered channel

!

?

!

?

!

?

δ

Exercises

• What is the effect of linking a zero-
buffered channel to another channel?

• Implement a singly-buffered channel
by means of two semaphores to
synchronise input with output, and a
variable to hold the content of the
buffer.

Threads

fork δ

δ

join δ

T1:

T2:

T3:

An atomic assignment (1)

x =: 3

y =: 4

x := 7

atomic(x := x+y)

An atomic assignment (2)

x =: 3

y =: 4

x := 7

atomic(x := x+y)

An atomic assignment (3)

x =: 3

y =: 4

x := 7

atomic(x := x+y)

x := 3 x := 4 x := 6

x =: 3 x =: 4 x =: 6

A shared variable (1)

x := 3

x := 4

x := 6

x =: 3 x =: 4 x =: 6

A shared variable (2)

T2

T1

x := 3

x := 4

x := 6

x =: 3 x =: 4 x =: 6

A shared variable(3)

Weakly consistent memory

• as implemented in multi-core
architecture...

• ...complicates shared variable
behaviour...

• ...both in definition and in use

Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

δxx := 0

Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

y := 0

δxx := 0

δy

Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

y := 0

δxx := 0

δy

Relaxed triangle

e g

f

:= ∪ δ

=:

:=

e g

f

:= ∪ δ

=:

:=

Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

y := 0

δxx := 0

δy

Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 2 x =: 1 x =: 3

B

Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 1 x =: 3 x =: 2

B

Memory barriers

e g

f

:= ∪ δ ∪ B

=:

:=

Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 2 x =: 1 x =: 3

B

valid

Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 1 x =: 3 x =: 2

B

invalid

Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 1 x =: 3 x =: 2

B

invalid

Cache (1)

x1 := 4 x1 := 3 x1 := 6T1 cache

Cache (2)

x1 := 4 x1 := 3 x1 := 6T1 cache

A second cache

x1 := 4 x1 := 3 x1 := 6T1 cache

x2 := 3 x2 := 4 x2 := 6T2 cache

Partial store ordering

x1 := 4 x1 := 3 x1 := 6T1 cache

x2 := 3 x2 := 4 x2 := 6

x =: 3 x =: 4 x =: 6

T2 cache

x =: 4 x =: 3 x =: 6

x1 := 4 x1 := 3 x1 := 6T1 cache

x2 := 3 x2 := 4 x2 := 6

x =: 3 x =: 4 x =: 6

T2 cache

x =: 4 x =: 3 x =: 6

x := 4 x := 3 x := 6main memory

Total store ordering

Summary

• Data flow is a primitive concept,

– adequate to describe the dynamic
behaviour of many kinds of computing
resource.

• Relational calculus,

– illustrated by labelled graphs,

– provides a general framework adequate
for a unifying theory of data flow

Acknowledgements

• Jay Misra

• Bernhard Möller

• Jørgen Steensgaard

• Viktor Vafeiadis

• Peter Höfner

• And especially John Wickerson

