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Unifying…
• Memory

– shared/private, weakly/strongly consistent

• Communication

– synchronised/buffered, reliable/unreliable

• Allocation

– dynamic/nested, disposed/collected 

• Concurrency

– threads/processes, coarse/fine-grained
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The behaviour of a resource

• ...is recorded as a trace of all events in 
which it has engaged...

– drawn as boxes

• ...with direct dependencies between 
them...

– drawn as arrows

– target cannot occur without/before source

• ...along which data may flow

source target



A sequential trace

δsssss



The sequential design pattern

sss

Defined in relational algebra as:

(s → s)+ δ



A Graph is

s, c, x, , …

the carrier set of events

a relation between events

a collection of subsets of events



m and n are relations

• e (m) f   means   (e, f)  ∈ m

• m n   is their relational composition

– e (m n) f  ≜  g. e (m) g  & g (n) f

• the identity relation is defined by 

– e (Id) f  ≜ (e = f)

• the universal relation is defined by

– e U f  ≜  true



Relational operators

• Converse:  e ← f  ≜  f → e , or:

e (m∪) f  ≜  f (m) e

• Kleene star:  ≜  (→)* , where 

– (m)*  = Id ∪ (m) ∪ (m m) ∪ (m m m) ∪ …

– (m)+ = (m) ∪ (m m) ∪ (m m m) ∪ …



Relational properties

• If → is acyclic, is antisymmetric: 
( ∩ )  Id

or, in predicate calculus:
e,f. e f  &  e f e = f

• If m is a (partial) function then:
m∪ m Id

or, in predicate calculus:
e,f,g. e (m) f  &  e (m) g  f = g 



A Resource

• ...is represented by the set of events 
in which it has engaged

• We use set-valued variables to range 
over resources

– c, d, … (channels)

– x, y, … (variables)

– r, s, … (etc.)



Sets and relations

• A set of events s is represented as a 
relation:  e (s) f  ≜  e ∈ s  &  e = f

• Set intersection corresponds to relational 
composition: s ∩ t = st

• (s → t) is a relation containing all arrows 
with source in s and target in t

• We can lift relations to sets:
s [m] t  ≜  e,f. e ∈ s  &  f ∈ t  e (m) f



A sequential trace

• Each event in  s  has at most one 
successor and one predecessor :

(s←s→s) ⊆ Id  and  (s→s←s) ⊆ Id

• Dependency is a total order on  s : 
(s ← s)* ∪ (s → s)* = s U s 

δssssνs



Sets of events

allocate

:= assign

! output

acquire

dispose

=: fetch

? input

release



Conjunction

• Suppose w is a data value. Then:

x := the set of all assignments to x 

x =: the set of all fetches of x

x := w the set of assignments of w to x

x =: w the set of fetches of w from x

s the set of all allocations of s

δs the set of all disposals of s



Allocation and disposal

• Allocation is the first event of a 
resource s: s [ ] s

• Each resource  s  has one allocation 
event: | s| = 1

• Disposal is similar



Implementation

• Allocation may be: 

– global,

– on stack, or

– on heap

• Disposal may be:

– from stack,

– by mark-and-sweep 
garbage collection,

– by operating system,

– by switching off, or

– by ultimate disposal 
of hardware



A semaphore s

ssss δss

s → s (ν → ) ∪ 
( → ) ∪
( → ) ∪
( → δ) ∪
(ν → δ) 



A parameter x

x := w

x =: w

x =: w

x =: w

x → x ← x   Id
x → x {(e,f) | ∃w. e ∈ ( x := w )

& f ∈ (x =: w ) }



Fan-in



Concurrent Resource

δ



Publication

pub(v')

read(v)

read(v)

read(v)

pub(v)



Assignment

x := w

x =: v

x =: v

x =: v

x := v



The token game (1)

x := w

x =: v

x =: v

x =: v

x := v



x := w

x =: v

x =: v

x =: v

x := v

The token game (2)



The token game (3)

x := w

x =: v

x =: v

x =: v

x := v



The token game (4)

x := w

x =: v

x =: v

x =: v

x := v



The token game (5)

x := w

x =: v

x =: v

x =: v

x := v



A variable

x → x ( → :=) ∪ ( → =:) ∪
(:= → :=) ∪ (:= → =:) ∪ 
(=: → :=) ∪ (=: → :=) ∪ 
( → δ) ∪ (:= → δ) ∪ (=: → δ) 

x := 4

x =: 3

x =: 3

x := 3 δx

x =: 4

x



A closed triangle (1)

• (:=)→(=:)→(:= ∪ δ)←(:=)    (:=)

• similar to:  (:=)→(=:)←(:=)   (:=)

e g

f

:= ∪ δ

=:

:=



A closed triangle (2)

• (:=)→(:= ∪ )←(=:)←(:=)   (:=)

e g

f

:= ∪ δ

=:

:=



Communication

c!3

c?3

c!7

c?7

c!9

c?9



Sequential outputs/inputs

c!3

c?3

c!7

c?7

c!9

c?9



Channel

c!3

c?3

c!7

c?7

c!9

c?9

c δc



Closed triangles

!

?

!

?

!

?

δ



Closed rectangles

!

?

!

?

!

?

δ



Singly-buffered channel

!

?

!

?

!

?

δ



Zero-buffered channel

!

?

!

?

!

?

δ



A lossy channel

!

?

! !

?

For a lossless channel, 
! → ?  is a total relation on outputs
!   ! → ? ← !

e ∈ ! . f ∈ ? . e→f



A stuttering channel

!

? ?

!

?

For a non-stuttering channel, 
! → ?  is a (partial) function
? ← ! → ?  ⊆  ?



A fraudulent channel

!

? ?

!

?

For a non-fraudulent channel, 
! → ?  is surjective
?   ? → ! ← ? 

e ∈ ? . f ∈ ! . f→e



A confusing channel

!

?

! !

?

For a non-confusing channel, 
! → ?  is injective
! → ? ← ! ⊆  Id
∀e,e’,f . e→f  &  e’→f  e = e’



An overtaking channel

! !

? ?



An order-preserving channel

(! → !)+ → ?  =  ! → (? → ?)+

!

?

!

?



New channels from old

!

?

!

?

!

?

δ



Take two channels...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ



...connect them...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ



... abstract internal events...
! ! !

δ

? ? ?

δ



... result: a single channel
!

?

!

?

!

? δ

!

?

!

?

!

?

δ



Two singly-buffered channels...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ



...connected...
!

?

!

?

!

? δ

!

?

!

?

!

?

δ



... doubly-buffered channel
!

?

!

?

!

? δ

!

?

!

?

!

?

δ



... doubly-buffered channel
!

?

!

?

!

? δ

!

?

!

?

!

?

δ



... doubly-buffered channel
! ! !

δ

? ? ?

δ



Zero-buffered channel

!

?

!

?

!

?

δ



Exercises

• What is the effect of linking a zero-
buffered channel to another channel?

• Implement a singly-buffered channel 
by means of two semaphores to 
synchronise input with output, and a 
variable to hold the content of the 
buffer.



Threads

fork δ

δ

join δ

T1:

T2:

T3:



An atomic assignment (1)

x =: 3

y =: 4

x := 7

atomic(x := x+y)



An atomic assignment (2)

x =: 3

y =: 4

x := 7

atomic(x := x+y)



An atomic assignment (3)

x =: 3

y =: 4

x := 7

atomic(x := x+y)



x := 3 x := 4 x := 6

x =: 3 x =: 4 x =: 6

A shared variable (1)



x := 3

x := 4

x := 6

x =: 3 x =: 4 x =: 6

A shared variable (2)



T2

T1

x := 3

x := 4

x := 6

x =: 3 x =: 4 x =: 6

A shared variable(3)



Weakly consistent memory

• as implemented in multi-core 
architecture...

• ...complicates shared variable 
behaviour...

• ...both in definition and in use



Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0



Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

δxx := 0



Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

y := 0

δxx := 0

δy



Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

y := 0

δxx := 0

δy



Relaxed triangle

e g

f

:= ∪ δ

=:

:=

e g

f

:= ∪ δ

=:

:=



Litmus test

T2

T1

y := 1

x := 1

x =: 0

y =: 0

y := 0

δxx := 0

δy



Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 2 x =: 1 x =: 3

B



Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 1 x =: 3 x =: 2

B



Memory barriers

e g

f

:= ∪ δ ∪ B

=:

:=



Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 2 x =: 1 x =: 3

B

valid



Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 1 x =: 3 x =: 2

B

invalid



Memory barriers

T1 x := 1 x := 2 x := 3

T2 x =: 1 x =: 3 x =: 2

B

invalid



Cache (1)

x1 := 4 x1 := 3 x1 := 6T1 cache



Cache (2)

x1 := 4 x1 := 3 x1 := 6T1 cache



A second cache

x1 := 4 x1 := 3 x1 := 6T1 cache

x2 := 3 x2 := 4 x2 := 6T2 cache



Partial store ordering

x1 := 4 x1 := 3 x1 := 6T1 cache

x2 := 3 x2 := 4 x2 := 6

x =: 3 x =: 4 x =: 6

T2 cache

x =: 4 x =: 3 x =: 6



x1 := 4 x1 := 3 x1 := 6T1 cache

x2 := 3 x2 := 4 x2 := 6

x =: 3 x =: 4 x =: 6

T2 cache

x =: 4 x =: 3 x =: 6

x := 4 x := 3 x := 6main memory

Total store ordering



Summary

• Data flow is a primitive concept,

– adequate to describe the dynamic 
behaviour of many kinds of computing 
resource.

• Relational calculus, 

– illustrated by labelled graphs,

– provides a general framework adequate 
for a unifying theory of data flow



Acknowledgements

• Jay Misra

• Bernhard Möller

• Jørgen Steensgaard

• Viktor Vafeiadis

• Peter Höfner

• And especially John Wickerson


