Decidability and

Symbolic Verification

Kim G. Larsen Aalborg University, DENMARK

פטח

Overview

- Decidability
- Region Construction
- Reachability \& Bisimulation Checking
- Symbolic Verification
- On-the-fly Exploration
- Zones and Difference Bounded Matrices (DBM)
- Clock Difference Diagrams (CDD)
- Verification Options

Reachability?

The Region Abstraction

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing
\rightsquigarrow an equivalence of finite index a time-abstract bisimulation

Time Abstracted Bisimulation

This is a relation between \bullet and \bullet such that:

... and vice-versa (swap • and •).

Regions - From Infinite to Finite

THM [AD90]
Reachability is decidable (and PSPACE-complete) for timed automata

THM [CY90]

Time-optimal reachability is decidable (and PSPACE-complete) for timed automata

Region Graph

It "mimicks" the behaviours of the clocks.

Region Automaton = Finite Bisimulation Quotiont

timed automaton

region graph
\mathcal{L} (reg. aut.) $=\operatorname{UNTIME}(\mathcal{L}($ timed aut. $))$

An Example

Region Automaton

timed automaton

large (but finite) automaton (region automaton)

LARGE: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is

$$
\prod_{x \in X}\left(2 M_{x}+2\right) \cdot|X!| \cdot 2^{|X|}
$$

Fundamental Results

- Bisimulation, Simulation
- Timed () EXPTIME-c ; Untimed (;)
- Trace-inclusion
- Timed UNDECIDABLE 2; Untimed ()$^{\text {PSPAACEC }^{C}}$

Symbolic Verification

The UPPAAL Verification Engine

פטח

Regions - From Infinite to Finite

The number of regions is $n!\cdot 2^{n} \cdot \prod_{x \in C}\left(2 c_{x}+2\right)$.

Zones - From Finite to Efficiency

Zones - Operations

Symbolic Exploration

Symbolic Exploration

Delay

Symbolic Exploration

Left

Symbolic Exploration

Left

Symbolic Exploration

Delay

Symbolic Exploration

Left

Symbolic Exploration

Left

Symbolic Exploration

Delay

Symbolic Exploration

Down

Datastructures for Zones

- Difference Bounded Matrices (DBMs)
- Minimal Constraint Form [RTSS97]

- Clock Difference Diagrams [CAV99]

Inclusion Checking (DBMs)

Inclusion

D1 | $x<=1$ |
| :--- |
| $y-x<=2$ |
| $z-y<=2$ |
| $z<=9$ |

$$
? \subseteq ?
$$

D2 | $x<=2$ |
| :--- |
| $y-x<=3$ |
| $y<=3$ |
| $z-y<=3$ |
| $z<=7$ |

Future (DBMs)

$$
\begin{aligned}
& 1<=x<=4 \\
& 1<=y<=3
\end{aligned}
$$

Future D

$$
\begin{aligned}
& 1<=x, 1<=y \\
& -2<=x-y<=3
\end{aligned}
$$

Reset (DBMs)

Verification Options

פטפ

Verification Options

Search Order

Depth First Breadth First
State Space Reduction
None
Conservative Aggressive
State Space Representation DBM
Compact Form Under Approximation
Over Approximation
Diagnostic Trace
Some
Shortest
Fastest

Extrapolation
 Hash Table size

Reuse

State Space Reduction

Cycles:
Only symbolic states involving loop-entry points need to be saved on Passed list

To Store or Not To Store

Over/Under Approximation

Question: $G \in R$?

How to use:
$\mathrm{G} \in \mathrm{O}$?
$G \in U$?

Declared State Space

Over-approximation

Convex Hull

TACAS04: An EXACT method performing as well as Convex Hull has been developed based on abstractions taking max constants into account distinguishing between clocks, locations and $\leq \& \geq$

Under-approximation

Bitstate Hashing

Under-approximation

Bitstate Hashing

> Passed= Bitarray

UPPAAL
4-512 Mbits

Extrapolation

주 C:/Documents and Settings/kg/Desktop/DESKTOP FEB 2007/UPPAAL/uppaal-4.0.8/demo/train-gate.xml - UPPAAL \square
File Edit View Tools Options Help

Forward Symbolic Exploration

TERMINATION not garanteed

Need for Finite Abstractions

Abstractions

$a: \mathcal{P}\left(R_{\geq 0}^{X}\right) \hookrightarrow \mathcal{P}\left(R_{\geq 0}^{X}\right)$ such that $W \subseteq a(W)$

$$
\frac{(\ell, W) \Rightarrow\left(\ell^{\prime}, W^{\prime}\right)}{(\ell, W) \Rightarrow_{a}\left(\ell^{\prime}, a\left(W^{\prime}\right)\right)} \quad \text { if } W=a(W)
$$

We want $\Rightarrow{ }_{a}$ to be:

- sound \& complete wrt reachability
- finite
- easy to compute
- as coarse as possible

Abstraction by Extrapolation

Let k be the largest constant appearing in the TA

Location Dependency

[Behrmann, Bouyer,

 Fleury, Larsen 03]

$$
k_{x}=5 \quad k_{y}=10^{6}
$$

Will generate all symbolic states of the form

$$
\begin{aligned}
& \left(I_{2}, x \in[0,14], y \in[5,14 n], y-x \in[5,14 n-14]\right) \\
& \text { for } n \leq 10^{6} / 14!!
\end{aligned}
$$

But $\mathrm{y} \geq 10^{6}$ is not RELEVANT in I_{2}

Location Dependent Constants

$$
k_{x}=5 k_{y}=10^{6}
$$

k_{x}^{i}	$=14$	for $i \in\{1,2,3,4\}$
$k_{y}{ }^{i}$	$=5$	for $i \in\{1,2,3\}$
	$k_{y}{ }^{4}$	$=10^{6}$

k_{j}^{j} may be found as solution to simple linear constraints!

Active Clock Reduction:

$$
k_{j}^{\mathrm{j}}=-\infty
$$

Experiments

	Constant BIG	Global Method	Active-clock Reduction	Local Constants
Naive Example	10^{3}	$0.05 \mathrm{~s} / 1 \mathrm{MB}$	$0.05 \mathrm{~s} / 1 \mathrm{MB}$	$0.00 \mathrm{~s} / 1 \mathrm{MB}$
	10^{4}	$4.78 \mathrm{~s} / 3 \mathrm{MB}$	$4.83 \mathrm{~s} / 3 \mathrm{MB}$	$0.00 \mathrm{~s} / 1 \mathrm{MB}$
	10^{5}	$484 \mathrm{~s} / 13 \mathrm{MB}$	$480 \mathrm{~s} / 13 \mathrm{MB}$	$0.00 \mathrm{~s} / 1 \mathrm{MB}$
	10^{6}	stopped	stopped	$0.00 \mathrm{~s} / 1 \mathrm{MB}$
Two Processes	10^{3}	$3.24 \mathrm{~s} / 3 \mathrm{MB}$	$3.26 \mathrm{~s} / 3 \mathrm{MB}$	$0.01 \mathrm{~s} / 1 \mathrm{MB}$
	10^{4}	$5981 \mathrm{~s} / 9 \mathrm{MB}$	$5978 \mathrm{~s} / 9 \mathrm{MB}$	$0.37 \mathrm{~s} / 2 \mathrm{MB}$
	10^{5}	stopped	stopped	$72 \mathrm{~s} / 5 \mathrm{MB}$
	10^{3}	$0.01 \mathrm{~s} / 1 \mathrm{MB}$	$0.01 \mathrm{~s} / 1 \mathrm{MB}$	$0.01 \mathrm{~s} / 1 \mathrm{MB}$
	10^{4}	$2.20 \mathrm{~s} / 3 \mathrm{MB}$	$2.20 \mathrm{~s} / 3 \mathrm{MB}$	$0.85 \mathrm{~s} / 2 \mathrm{MB}$
	10^{5}	$333 \mathrm{~s} / 19 \mathrm{MB}$	$333 \mathrm{~s} / 19 \mathrm{MB}$	$160 \mathrm{~s} / 13 \mathrm{MB}$
	10^{6}	$33307 \mathrm{~s} / 122 \mathrm{MB}$	$33238 \mathrm{~s} / 122 \mathrm{MB}$	$16330 \mathrm{~s} / 65 \mathrm{MB}$
Bang \& Olufsen	25000	stopped	$159 \mathrm{~s} / 243 \mathrm{MB}$	$123 \mathrm{~s} / 204 \mathrm{MB}$

Lower and Upper Bounds

Given that $x \leq 10^{6}$ is an upper bound implies that

$$
\left(I, v_{x}, v_{y}\right) \text { simulates }\left(I, v_{x}^{\prime}, v_{y}\right)
$$

whenever $v_{x}^{\prime} \geq v_{x} \geq 10$.
For reachability downward closure wrt simulation suffices!

Simulation

$\preccurlyeq \quad$ is the largest relation satisfying

1. if $\left(\ell_{1}, \nu_{1}\right) \preccurlyeq\left(\ell_{2}, \nu_{2}\right)$ then $\ell_{1}=\ell_{2}$
2. if $\left(\ell_{1}, \nu_{1}\right) \preccurlyeq\left(\ell_{2}, \nu_{2}\right)$ and $\left(\ell_{1}, \nu_{1}\right) \longrightarrow\left(\ell_{1}^{\prime}, \nu_{1}^{\prime}\right)$, then there exists $\left(\ell_{2}^{\prime}, \nu_{2}^{\prime}\right)$ such that $\left(\ell_{2}, \nu_{2}\right) \longrightarrow\left(\ell_{2}^{\prime}, \nu_{2}^{\prime}\right)$ and $\left(\ell_{1}^{\prime}, \nu_{1}^{\prime}\right) \preccurlyeq\left(\ell_{2}^{\prime}, \nu_{2}^{\prime}\right)$
3. if $\left(\ell_{1}, \nu_{1}\right) \preccurlyeq\left(\ell_{2}, \nu_{2}\right)$ and $\left(\ell_{1}, \nu_{1}\right) \xrightarrow{\epsilon(\delta)}\left(\ell_{1}, \nu_{1}+\delta\right)$, then there exists δ^{\prime} such that $\left(\ell_{2}, \nu_{2}\right) \xrightarrow{\epsilon\left(\delta^{\prime}\right)}\left(\ell_{2}, \nu_{2}+\delta^{\prime}\right)$ and $\left(\ell_{1}, \nu_{1}+\delta\right) \preccurlyeq\left(\ell_{2}, \nu_{2}+\delta^{\prime}\right)$

Proposition

If $\left(\ell, \nu_{1}\right) \preccurlyeq\left(\ell, \nu_{2}\right)$ and if a discrete state ℓ^{\prime} is reachable from $\left(\ell, \nu_{1}\right)$, then it is also reachable from $\left(\ell, \nu_{2}\right)$.

Maximal Bounds

$M(x)$: the maximum constant k with $x \sim k$, $L(x)$: the maximum constant k with $x\{\geq,>\} k$, $U(x)$: the maximum constant k with $x\{\leq,<\} k$.

$$
\begin{aligned}
& \nu \equiv_{M} \nu^{\prime} \stackrel{\text { def }}{\Longleftrightarrow} \\
& \forall x \in X: \text { either } \nu(x)=\nu^{\prime}(x) \text { or }\left(\nu(x)>M(x) \text { and } \nu^{\prime}(x)>M(x)\right)
\end{aligned}
$$

$$
\nu^{\prime} \prec_{L U} \nu \stackrel{\text { def }}{\Longleftrightarrow} \text { for each clock } x,\left\{\begin{array}{l}
\text { either } \nu^{\prime}(x)=\nu(x) \\
\text { or } L(x)<\nu^{\prime}(x)<\nu(x) \\
\text { or } U(x)<\nu(x)<\nu^{\prime}(x)
\end{array}\right.
$$

Maximum Bounds Abstraction

Extrapolation Using Zones

Experiments

	Model	Classical			Loc. dep. Max			Loc. dep. LU			Convex Hull		
		-n1			-n2			-n3			-A		
		Time	States	Mem									
	f5	4.02	82,685	5	0.24	16,980	3	0.03	2,870	3	0.03	3,650	3
	f6	597.04	1,489,230	49	6.67	158,220	7	0.11	11,484	3	0.10	14,658	3
$\stackrel{(1)}{\triangle}$	f7				352.67	1,620,542	46	0.47	44,142	3	0.45	56,252	5
-	88							2.11	164,528	6	2.08	208,744	12
나	$f 9$							8.76	598,662	19	9.11	754,974	39
	f10							37.26	2,136,980	68	39.13	2,676,150	143
	f11							152.44	7,510,382	268			
	c5	0.55	27,174	3	0.14	10,569	3	0.02	2,027	3	0.03	1,651	3
0	c6	19.39	287,109	11	3.63	87,977	5	0.10	6,296	3	0.06	4,986	3
2	c7				195.35	813,924	29	0.28	18,205	3	0.22	14,101	4
§	c8							0.98	50,058	5	0.66	38,060	7
0	c9							2.90	132,623	12	1.89	99,215	17
O	c10							8.42	341,452	29	5.48	251,758	49
	c11							24.13	859,265	76	15.66	625,225	138
	c12							68.20	2,122,286	202	43.10	1,525,536	394
	bus	102.28	6,727,443	303	66.54	4,620,666	254	62.01	4,317,920	246	45.08	3,826,742	324
	philips	0.16	12,823	3	0.09	6,763	3	0.09	6,599	3	0.07	5,992	3
	sched	17.01	929,726	76	15.09	700,917	58	12.85	619,351	52	55.41	3,636,576	427

Related \& Future Work

- DDD: Andersen et al.
- NDD: Asarin, Bozga, Kerbrat, Maler, Pnueli, Rasse.
- IDD: Strehl, Thiele.
- No efficient algorithm for FUTURE and RESET operation on CDD.
- No canonical form.
- An efficient, fully symbolic engine for TA is still missing!!

Additional "secrets"

- Sharing among symbolic states
- location vector / discrete values / zones
- Distributed implementation of UPPAAL
- Symmetry Reduction
- Sweep Line Method
- Guiding wrt Heuristic Value
- User-supplied / Auto-generated
- Slicing wrt "C" Code

Open Problems

- Fully symbolic exploration of TA (both discrete and continuous part)?
- Canonical form for CDD's ?
- Partial Order Reduction?
- Compositional Backwards Reachability ?
- Bounded Model Checking for TA ?
- Exploitation of multi-core processors?

