
Model Checking
Slides for MarktOberdorf Summer
School 2010

Doron A. Peled

Bar Ilan
University,
Israel

Version 2010

Some related books:

Also:Mainly:

http://www.dcs.warwick.ac.uk/~doron

Model Checking

 Modeling Systems

 Obtaining Specification (or formalizing
them).

 Comparing model with specification
algorithmically.

 Works for finite state systems +
extensions.

Verification Starts with Modeling!
Sequential systems.

 Perform some computational task.

 Have some initial condition, e.g.,
0 i n A[i] integer.

 Have some final assertion, e.g.,
0 i n-1 A[i] A[i+1].

(What is the problem with this spec?)

 Are supposed to terminate.

Concurrent Systems

Involve several computation agents.

Termination may indicate an abnormal
event (interrupt, strike).

May exploit diverse computational power.

May involve remote components.

May interact with users (Reactive).

May involve hardware components
(Embedded).

Problems in modeling systems

 Representing concurrency:
- Allow one transition at a time, or
- Allow coinciding transitions.

 Granularity of transitions.

 Assignments and checks?

 Application of methods?

 Global (all the system) or local (one
thread at a time) states.

Modeling.
The states-based model.

 V={v0,v1,v2, …} - a set of variables, over some
domain.

 p(v0, v1, …, vn) - a parameterized assertion, e.g.,

v0=v1+v2 /\ v3>v4.

 A state is an assignment of values to the program
variables. For example:
s=<v0=1,v1=3,v3=7,…,v18=2>

 For predicate (first order assertion) p:
p(s) is p under the assignment s.
Example: p is x>y /\ y>z. s=<x=4, y=3, z=5>.
Then we have 4>3 /\ 3>5, which is false.

State space

 The state space of a program is the set
of all possible states for it.

 For example, if V={a, b, c} and the
variables are over the naturals, then the
state space includes:
<a=0,b=0,c=0>,<a=1,b=0,c=0>,

<a=1,b=1,c=0>,<a=932,b=5609,c=6658>…

Atomic Transitions

 Each atomic transition represents a
small piece of code such that no smaller
piece of code is observable.

 Is a:=a+1 atomic?

 In some systems, e.g., when a is a
register and the transition is executed
using an inc command.

Non atomicity

 Execute the
following when a=0
in two concurrent
processes:

 P1:a=a+1

 P2:a=a+1

 Result: a=2.

 Is this always the
case?

 Consider the actual
translation:

P1:load R1,a

inc R1

store R1,a

P2:load R2,a

inc R2

store R2,a

 a may be also 1.

Scenario

P1:load R1,a

inc R1

store R1,a

P2:load R2,a

inc R2

store R2,a

a=0

R1=0

R2=0

R1=1

R2=1

a=1

a=1

Representing transitions

 Each transition has two parts:

 The enabling condition: a predicate.

 The transformation: a multiple assignment.

 For example:
a>b (c,d):=(d,c)
This transition can be executed in states
where a>b. The result of executing it is
switching the value of c with d.

Initial condition

 A predicate I.

 The program can
start from states s
such that I (s)
holds.

 For example:
I (s)=a >b /\ b >c.

A transition system

 A (finite) set of variables V over some
domain.

 A set of states .

 A (finite) set of transitions T, each
transition e t has
 an enabling condition e, and

 a transformation t.

 An initial condition I.

Example

 V={a, b, c, d, e}.

 : all assignments of natural numbers
for variables in V.

 T={c >0(c,e):=(c -1,e +1),
d >0(d,e):=(d -1,e +1)}

 I: c =a /\ d =b /\ e =0

 What does this transition system do?

The interleaving model

 An execution is a maximal finite or infinite
sequence of states s0, s1, s2, …
That is: finite if nothing is enabled from the last
state.

 The first state s0 satisfies the initial
condition, I.e., I (s0).

 Moving from one state si to its successor
si+1 is by executing a transition et:
 e (si), i.e., si satisfies e.

 si+1 is obtained by applying t to si.

Example:

 s0=<a=2, b=1, c=2, d=1, e=0>

 s1=<a=2, b=1, c=1, d=1, e=1>

 s2=<a=2, b=1, c=1, d=0, e=2>

 s3=<a=2, b=1 ,c=0, d=0, e=3>

T={c>0(c,e):=(c -1,e +1),

d>0(d,e):=(d-1,e+1)}

I: c=a /\ d=b /\ e=0

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0:=NC0
T1:PC0=NC0/\Turn=0

PC0:=CR0
T2:PC0=CR0

(PC0,Turn):=(L0,1)
T3:PC1=L1PC1=NC1
T4:PC1=NC1/\Turn=1

PC1:=CR1
T5:PC1=CR1

(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

The transitions

Is this the only reasonable way to model this program?

The state graph: Successor relation between
reachable states.
Nodes are labeled with propositions
representing properties.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1T0 T0T3 T3

T1 T4
T3

T0 T3

T0

T0 T4T1 T3

T2

T2

T5

T5

Some important points

 Reachable states: obtained from an initial state through
a sequence of enabled transitions.

 Executions: the set of maximal paths (finite or
terminating in a node where nothing is enabled).

 Nondeterministic choice: when more than a single
transition is enabled at a given state. We have a
nondeterministic choice when at least one node at the
state graph has more than one successor.

 Propositions correspond to properties that either hold or
do not hold in a state.

Always ¬(PC0=CR0/\PC1=CR1)
(Mutual exclusion)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Always if Turn=0 then at
some point Turn=1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Always if Turn=0 then at
some point Turn=1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Interleaving semantics:
Execute one transition at a time.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=1
L0,CR1

Turn=1
L0,NC1

Need to check the property

for every possible interleaving!

Interleaving semantics

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=1
L0,CR1

Turn=1
L0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0:=NC0

T1:PC0=NC0/\Turn=0PC0:=CR0

T1’:PC0=NC0/\Turn=1PC0:=NC0

T2:PC0=CR0(PC0,Turn):=(L0,1)

T3:PC1==L1PC1=NC1

T4:PC1=NC1/\Turn=1PC1:=CR1

T4’:PC1=NC1/\Turn=0PC1:=NC1

T5:PC1=CR1(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

Busy waiting

Always when Turn=0 then
at some point Turn=1

Now it does not hold!

(Red subgraph generates a counterexample execution.)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1T4’ T1’

Combinatorial explosion

V1:=1

V1:=3

V1:=2

Vn:=1

Vn:=3

Vn:=2
…

How many states?

Global states

3n states

v1=1,v2=1…vn=1

v1=2,v2=1…vn=1 v1=1,v2=1…vn=2…

v1=3,v2=1…vn=1 …

…

v1=1,v2=1…vn=3

Specification Formalisms

(Book: Chapter 5)

Properties of formalisms

 Formal. Unique interpretation.
 Intuitive. Simple to understand (visual).
 Succinct. Spec. of reasonable size.
 Effective.

 Check that there are no contradictions.
 Check that the spec. is implementable.
 Check that the implementation satisfies spec.

 Expressive.
 May be used to generate initial code.
Specifying the implementation or its properties?

A transition system

 A (finite) set of variables V.

 A set of states .

 A (finite) set of transitions T, each transition et

has

 an enabling condition e and a transformation t.

 An initial condition I.

 Denote by R(s, s’) the fact that s’ is a successor of s.

The interleaving model

 An execution is a finite or infinite sequence of states s0, s1,
s2, …

 The initial state satisfies the initial condition, I.e., I (s0).

 Moving from one state si to si+1 is by executing a transition
et:

 e(si), I.e., si satisfies e.

 si+1 is obtained by applying t to si.

 Lets assume all sequences are infinite by extending finite
ones by “stuttering” the last state.

Temporal logic

 Dynamic, speaks about several “worlds”
and the relation between them.

 Our “worlds” are the states in an
execution.

 There is a linear relation between them,
each two sequences in our execution
are ordered.

 Interpretation: over an execution,
later over all executions.

LTL: Syntax

::= () | ¬ | /\ \/ U
|O | p

“box”, “always”, “forever”

“diamond”, “eventually”, “sometimes”

O “nexttime”

U “until”

Propositions p, q, r, … Each represents some
state property (x>y+1, z=t, at_CR, etc.)

Semantics over suffixes of execution

O

U

Can discard some operators

 Instead of <>p, write true U p.

 Instead of []p, we can write ¬(<>¬p),
or ¬(true U ¬p).
Because []p=¬¬[]p.
¬[]p means it is not true that p holds
forever, or at some point ¬p holds or
<>¬p.

Combinations

 []<>p “p will happen infinitely often”

 <>[]p “p will happen from some point
forever”.

 ([]<>p)  ([]<>q) “If p happens

infinitely often, then q also happens
infinitely often”.

Some relations:

 [](/\)=([])/\([])

 But <>(/\) (<>)/\(<>)

 <>(\/)=(<>)\/(<>)

 But [](\/) ([])\/([])

Formal semantic definition
 Let be a sequence s0 s1 s2 …

 Let i be a suffix of : si si+1 si+2 … (0 =)


i |= p, where p a proposition, if si|=p.


i |= /\ if i |= and i |= .


i |= \/ if i |= or i |= .


i |= ¬ if it is not the case that i |= .


i |= <> if for some j i, j |= .


i |= [] if for each j i, j |= .


i |= U if for some j i, j|=

and for each i k<j, k |= .

Then we interpret:

 For a state:
s|=p as in propositional logic.

 For an execution:
|= is interpreted over a sequence, as

in previous slide.

 For a system/program:
P|= holds if |= for every sequence

of P.

Specifications

 [] (PC0=NC0  <> PC0=CR0)

 [] (PC0=NC0 PC0=NC0 U Turn=0)

- Ex. The processes alternate in
entering their critical sections.
- Ex. Each process enters its critical
section infinitely often.

Traffic light example

Green Yellow Red

Always has exactly one light:

[](¬(gr/\ye)/\¬(ye/\re)/\¬(re/\gr)/\(gr\/ye\/re))

Correct change of color:

[]((grU ye)\/(yeU re)\/(reU gr))

Another kind of traffic light

GreenYellowRedYellow

First attempt:

[](((gr\/re) U ye)\/(ye U (gr\/re)))

Correct specification:

[]((gr(gr U (ye /\ (ye U re))))

/\(re(re U (ye /\ (ye U gr))))

/\(ye(ye U (gr \/ re))))
Needed only when we
can start with yellow

Automata over finite words

 A=< , S, , I, F>

 (finite) - the alphabet.
 S (finite) - the states.
 S x x S - the transition relation.
 I S - the starting states.
 F S - the accepting states.

a

a

b

bs0 s1

The transition relation

 (s0, a, s0)

 (s0, b, s1)

 (s1, a, s0)

 (s1, b, s1)

a

a

b

bs0 s1

A run over a word

 A word over , e.g., abaab.
 A sequence of states, e.g. s0 s0 s1 s0 s0 s1.
 Starts with an initial state.
 Follows the transition relation (si, ci , si+1).
 Accepting if ends at accepting state.

a

a

b

bs0 s1

The language of an
automaton

 The words that are accepted by the
automaton.

 Includes aabbba, abbbba.
 Does not include abab, abbb.
 What is the language?

a

a

b

bs0 s1

Nondeterministic automaton

 Transitions: (s0,a ,s0), (s0,b ,s0),
(s0,a ,s1),(s1,a ,s1).

 What is the language of this
automaton?

a,b
a

as0
s1

Equivalent deterministic automaton

b

a

as0 s1

b

a,b a
as0 s1

Automata over infinite words

 Similar definition.

 Runs on infinite words over .

 Accepts when an accepting state occurs
infinitely often in a run.

a

a

b

bs0 s1

Automata over infinite words

 Consider the word abababab…

 There is a run s0s0s1s0s1s0s1 …

 This run in accepting, since s0

appears infinitely many times.

a

a

b

bs0 s1

Other runs

 For the word bbbbb… the run is
s0 s1 s1 s1 s1… and is not accepting.

 For the word aaabbbbb …, the
run is s0 s0 s0 s0 s1 s1 s1 s1 …

 What is the run for ababbabbb …?

a

a

b

bs0 s1

Nondeterministic automaton

 What is the language of this automaton?

 What is the LTL specification if
b -- PC0=CR0, a =¬b?

•Can you find a deterministic automaton with same language?

•Can you prove there is no such deterministic automaton?

a,b
a

as0 s1

No deterministic automaton
for (a+b)*aω

 In a deterministic automaton there is one run for
each word.

 After some sequence of a’s, i.e., aaa…a must reach
some accepting state.

 Now add b, obtaining aaa…ab.
 After some more a’s, i.e., aaa…abaaa…a must reach

some accepting state.
 Now add b, obtaining aaa…abaaa…ab.
 Continuing this way, one obtains a run that has

infinitely many b’s but reaches an accepting state
(in a finite automaton, at least one would repeat)
infinitely often.

Specification using Automata

 Let each letter correspond to some propositional
property.

 Example: a -- P0 enters critical section,
b -- P0 does not enter section.

 []<>PC0=CR0

a

a

b

bs0 s1

Mutual Exclusion

 a -- PC0=CR0/\PC1=CR1
 b -- ¬(PC0=CR0/\PC1=CR1)
 c -- true
 []¬(PC0=CR0/\PC1=CR1)

b a
cs0 s1

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0=NC0

T1:PC0=NC0/\Turn=0

PC0:=CR0

T2:PC0=CR0

(PC0,Turn):=(L0,1)

T3:PC1==L1PC1=NC1

T4:PC1=NC1/\Turn=1

PC1:=CR1

T5:PC1=CR1

(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

Apply now to our
program:

The state space

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

[]¬(PC0=CR0/\PC1=CR1)
(Mutual exclusion)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

[](Turn=0 <>Turn=1)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Interleaving semantics:
Execute one transition at a time.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=1
L0,CR1

Turn=1
L0,NC1

Need to check the property

for every possible interleaving!

[](Turn=0  <>Turn=1)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Correctness condition

 We want to find a correctness condition
for a model to satisfy a specification.

 Language of a model: L(Model)

 Language of a specification: L(Spec).

 We need: L(Model) L(Spec).

Correctness

All sequences

Sequences satisfying Spec

Program executions

Incorrectness

All sequences

Sequences satisfying Spec

Program executions

Counter

examples

Automatic Verification

(Book: Chapter 6)

How can we check the model?

 The model is a graph.

 The specification should refer the graph
representation.

 Apply graph theory algorithms.

What properties can we check?

 Invariant: a property that needs to
hold in each reachable state.

 Deadlock detection: can we reach a
state where the program is blocked?

 Dead code: does the program have
parts that are never executed.

How to perform the checking?

 Apply a search strategy (Depth first
search, Breadth first search).

 Check states/transitions during the
search.

 If property does not hold, report
counter example!

If it is so good, why learn deductive
verification methods?

 Model checking works only for finite
state systems. Would not work with

 Unconstrained integers.

 Unbounded message queues.

 General data structures:

 queues

 trees

 stacks

 parametric algorithms and systems.

The state space explosion

 Need to represent the state space of a program in
the computer memory.

 Each state can be as big as the entire memory!

 Many states:
Each integer variable has 2^32 possibilities.
Two such variables have 2^64 possibilities.

 In concurrent protocols, the number of states can
exponentially with the number of processes.

If it is so constrained, is it of any use?

 Many protocols are finite state.

 Many programs or procedure are finite state
in nature. Can use abstraction techniques.

 Sometimes it is possible to decompose a
program, and prove part of it by model
checking and part by theorem proving.

 Many techniques to reduce the state space
explosion.

How can we check properties with DFS?

 Invariants: check that all reachable states
satisfy the invariant property. If not, show
a path from an initial state to a bad state.

 Deadlocks: check whether a state where no
process can continue is reached.

 Dead code: as you progress with the DFS,
mark all the transitions that are executed at
least once.

The state relation between
states.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

¬(PC0=CR0/\PC1=CR1) is

an invariant!

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Want to do more!

 Want to check more properties.

 Want to have a unique algorithm to
deal with all kinds of properties.

 This is done by writing specification in
more complicated formalisms.

 We will see that in the next lecture.

[](Turn=0  <>Turn=1)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

init

New initial state

Convert graph into
Buchi automaton

Turn=0
L0,L1

Turn=1
L0,L1

init

•Propositions are attached to incoming nodes.

•All nodes are accepting.

Turn=1
L0,L1

Turn=0
L0,L1

Correctness condition

 We want to find a correctness condition
for a model to satisfy a specification.

 Language of a model: L(Model)

 Language of a specification: L(Spec).

 We need: L(Model) L(Spec).

Correctness

All sequences

Sequences satisfying Spec

Program executions

How to prove correctness?

 Show that L(Model) L(Spec).

 Equivalently: ______
Show that L(Model) L(Spec) = Ø.

 Also: can obtain Spec by translating
from LTL!

What do we need to know?

 How to intersect two automata?

 How to complement an automaton?

 How to translate from LTL to an
automaton?

Intersecting M1=(S1, ,T1,I1,A1)
and M2=(S2, ,T2,I2,S2)

 Run the two automata in parallel.

 Each state is a pair of states: S1 x S2

 Initial states are pairs of initials: I1 x I2

 Acceptance depends on first
component: A1 x S2

 Conforms with transition relation:
(x1,y1)-a->(x2,y2) when
x1-a->x2 and y1-a->y2.

Example (all states of second

automaton accepting!)

a

b

ct0 t1

a

a

b,c

b,cs0 s1

States: (s0,t0), (s0,t1), (s1,t0), (s1,t1).

Accepting: (s0,t0), (s0,t1). Initial: (s0,t0).

a

b

ct0 t1

a

a

b,c

b,cs0 s1

s0,t0

s0,t1

s1,t1

s1,t0b

b

a

c

a

c

More complicated when A2 S2

a

b

ct0 t1

a

a

b,c

s0 s1

Should we have acceptance when both
components accepting? I.e., {(s0,t1)}?

No, consider (ba)
It should be accepted, but never passes that state.

s0,t0

s1,t1

b a

c

More complicated when A2 S2

a

b

ct0 t1

a

a

b,c
b,cs0 s1

Should we have acceptance when at least one
components is accepting? I.e., {(s0,t0),(s0,t1),(s1,t1)}?
No, consider b c
It should not be accepted, but here will loop through
(s1,t1)

s0,t0

s1,t1

b

c

a

Intersection - general case

q0 q2

q3q1

q0,q3 q1,q3q1,q2

a a, c

c

c, bb

c

c

b

a

Version 0: to catch q0

Version 1: to catch q2

q0,q3 q1,q3q1,q2

q0,q3 q1,q3q1,q2

Move when see accepting of left (q0) Move when see accepting of right (q2)

Version 0

Version 1

c

c

c

c

b

a

b

a

Version 0: to catch q0

Version 1: to catch q2

q0,q3 q1,q3q1,q2

q0,q3 q1,q3q1,q2

Move when see accepting of left (q0) Move when see accepting of right (q2)

Version 0

Version 1

c

c

c

c

b

a

b

a

Make an accepting state in one of the
version according to a component
accepting state

q0,q3,0 q1,q3,0q1,q2,0

q0,q3,1 q1,q3 ,1q1,q2 ,1

Version 1

Version 0

c

c

c

c

b

ab

a

How to check for emptiness?

s0,t0

s1,t1

b a

c

Emptiness...

Need to check if there exists an accepting
run (passes through an accepting state
infinitely often).

Strongly Connected
Component (SCC)

A set of states with a path between each
pair of them.

Can use Tarjan’s DFS algorithm for finding
maximal SCC’s.

Finding accepting runs

If there is an accepting run, then at least one accepting state
appears on it infinitely often.

Look at a suffix of this run where all the states appear infinitely
often.

These states form a strongly connected component on the
automaton graph, including an accepting state.

Find a component like that and form an accepting cycle including the
accepting state.

That is…

 A strongly connected component: a set of nodes
where each node is reachable by a path from each
other node. Find if there is a (maximal) reachable
strongly connected component with an accepting
node.

 If there is such a reachable component we can form
a cycle through an accepting state (and vice versa!)

The system does not
satisfy its specification if
and only if there is a
“lasso” shape through an
accepting state.

Catching bugs with a lasso…

 Use a double DFS algorithm to find reachable
cycles with accepting state “on-the-fly”.

 “Ultimately periodic” (lasso) sequences allows
reporting errors using finite representation.

Ultimately periodic accepted
sequence

State space

How to complement a Buchi
automaton?

 “Its complicated” [Facebook, 2007]

 Can ask for the negated property (the
sequences that should never occur).

 Can translate from LTL formula to
automaton A, and complement A. But:
can translate ¬ into an automaton
directly!

Model Checking under Fairness

Express the fairness as a property φ.
To prove a property ψ under fairness,
model check φψ.

Fair (φ)

Bad (¬ψ) Program

Counter

example

Model Checking under Fairness

Specialize model checking. For weak
process fairness: search for a
reachable strongly connected
component, where for each process
P either

 it contains on occurrence of a
transition from P, or

 it contains a state where P is
disabled.

Translating from logic to
automata

(Book: Chapter 6)

Why translating?

 Want to write the specification in some
logic.

 Want model-checking tools to be able
to check the specification automatically.

Generalized Büchi automata

 Acceptance condition F is a set
F={f1 , f2 , … , fn } where each fi is a set
of states.

 To accept, a run needs to pass infinitely
often through a state from every set fi .

Translating into simple Büchi
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

a

b

a

Translating into simple Büchi
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

b

a

Translating into simple Büchi
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

a

b

a

Preprocessing

 Convert into normal form, where negation
only applies to propositional variables.

 ¬[] becomes <>¬ .

 ¬<> becomes [] ¬ .

 What about ¬ (U)?

 Define operator R such that
¬ (U) = (¬) R (¬),

¬ (R) = (¬) U (¬).

Semantics of pR q

p

qqq qq qq

q

qq

q qqq

¬p¬p¬p

¬p ¬p ¬p ¬p ¬p ¬p ¬p ¬p¬p

¬p

 Replace ¬true by false, and ¬false by
true.

 Replace ¬ (\/) by (¬) /\ (¬) and
¬ (/\) by (¬) \/ (¬)

Eliminate implications, <>, []

 Replace -> by (¬) \/ .

 Replace <> by (true U).

 Replace [] by (false R).

Example

 Translate ([]<>P)  ([]<>Q)

 Eliminate implication ¬([]<>P) \/ ([]<>Q)

 Eliminate [], <>:
¬(false R (true U P)) \/ (false R (true U Q))

 Push negation inwards:
(true U (false R ¬ P)) \/ (false R (true U Q))

The data structure

Incoming

New Old

NextName

The main idea

 U = \/ (/\ O (U))

 R = /\ (\/ O (R))

This separates the formulas to two
parts:
one holds in the current state, and the
other
in the next state.

How to translate?

 Take one formula from “New” and add
it to “Old”.

 According to the formula, either

 Split the current node into two, or

 Evolve the node into a new version.

Splitting

Incoming

New Old

Next

Incoming

New Old

Next

Incoming

New Old

Next

Copy incoming

edges, update

other field.

Evolving

Incoming

New Old

Next

Incoming

New Old

Next

Copy incoming

edges, update

other field.

Possible cases:

 U , split:

 Add to New, add U to Next.

 Add to New.

Because U = \/ (/\ O (U)).

 R , split:

 Add to New.

 Add to New, R to Next.

Because R = /\ (\/ O (R)).

More cases:

 \/ , split:

 Add to New.

 Add to New.

 /\ , evolve:

 Add to New.

 O , evolve:

 Add to Next.

How to start?

Incoming

New Old

Next

init

aU(bUc)

Incoming

init

aU(bUc)

Incoming Incoming

aU(bUc)aU(bUc) bUc

aU(bUc)

a

init init

Incoming

aU(bUc)bUc

init
init

Incoming Incoming

aU(bUc)aU(bUc) c

(bUc)

b
bUc bUc

When to stop splitting?

 When “New” is empty.

 Then compare against a list of existing nodes
“Nodes”:

 If such a with same “Old”, “Next” exists,
just add the incoming edges of the new version
to the old one.

 Otherwise, add the node to “Nodes”. Generate a
successor with “New” set to “Next” of father.

Incoming

a,aU(bUc)

aU(bUc)

init

Incoming

aU(bUc)

Creating a successor

node.

When we enter to

Nodes a new node

(with different Old or

Next than any other

node), we start a new

node by copying Next

to New, and making

an edge to the new

successor.

How to obtain the automaton?

There is an edge from
node X to Y labeled
with propositions P
(negated or non
negated), if X is in the
incoming list of Y, and
Y has propositions P
in field “Old”.

Initial node is init.

Incoming

New Old

Next

X

Node Y

a, b, ¬c

The resulted nodes.

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

All nodes with incoming edge from “init”.

Initial nodes

Include only atomic propositions

Init

a

b

c

cb

Acceptance conditions

 Use “generalized Buchi automata”, where
there are several acceptance sets f1, f2, …, fn,
and each accepted infinite sequence must
include at least one state from each set
infinitely often.

 Each set corresponds to a subformula of form
U . Guarantees that it is never the case

that U holds forever, without .

Accepting w.r.t. bU c

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

All nodes with c, or without bUc.

Acceptance w.r.t. aU (bU c)

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

All nodes with bUc or without aU(bUc).

Complexity!!!

 Model checking is complete for PSPACE both in the
“size of the model” and the LTL property.

 “Size of the model” is the accumulated sizes of the
processes.

 The upper bound is proved by NOT explicitly
constructing the actual global state space graph or
Buchi automaton for the LTL property, but rather
performing a binary search over their product.

 All practical algorithms actually use exponential time
and space.

What is SPIN?

 Model-checker.

 Based on automata theory.

 Allows LTL or automata specification.

 Efficient (on-the-fly model checking,
partial order reduction).

 Developed in Bell Laboratories.

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

c1=c2=0,
turn=1

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

c1=c2=0,
turn=1

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

P1 waits for P2 to set c2 to 1 again.
Since turn=1 (priority for P1), P2 is
ready to do that. But never gets the
chance, since P1 is constantly active
checking c2 in its while loop.

c1=c2=0,
turn=1

0:START P1

11:c1:=1

12:true

13:end2:c1:=0

8:c2=0?

7:turn=2?

6:c1:=0

3:c1:=1

11:turn:=2

10:c1:=1

9:critical-1

4:no-op

5:turn=2?

no

no

no

noyes

yes

yes

yes

0:START P2

11:c2:=1

12:true

13:end2:c2:=0

8:c1=0?

7:turn=1?

6:c2:=0

3:c2:=1

11:turn:=1

10:c2:=1

9:critical-2

4:no-op

5:turn=1?

no

no

no

noyes

yes

yes

yes

Initially:

turn=1

What went wrong?

 The execution is unfair to P2. It is
not allowed a chance to execute.

 Such an execution is due to the
interleaving model (just picking an
enabled transition).

 Allowing P2 to progress, it would
continue and set c2 to 0, which
would allow P1 to progress.

 Fairness = excluding some of the
executions in the interleaving
model, which do not correspond to
actual behavior of the system.

while c1=0 do
begin

if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end

Recall:
The interleaving model

 An execution is a finite or infinite sequence of states s0, s1, s2,
…

 The initial state satisfies the initial condition, I.e., I (s0).

 Moving from one state si to si+1 is by executing a transition
et:

 e(si), I.e., si satisfies e.

 si+1 is obtained by applying t to si.

Now: consider only “fair” executions. Fairness constrains
sequences that are considered to be executions.

Fair
executions

Sequences
Executions

Some fairness definitions

 Weak transition fairness:
It cannot happen that a transition is enabled indefinitely, but is
never executed.

 Weak process fairness:
It cannot happen that a process is enabled indefinitely, but non
of its transitions is ever executed

 Strong transition fairness:
If a transition is infinitely often enabled, it will get executed.

 Strong process fairness:
If at least one transition of a process is infinitely often enabled,
a transition of this process will be executed.

Example

P1::x=1 P2: do
:: y==0 ->

if
:: true
:: x==1 -> y=1
fi

od

Initially: x=0; y=0;

In order for the loop to
terminate (in a deadlock !)
we need P1 to execute the
assignment. But P1 may
never execute, since P2 is
in a loop executing true.
Consequently, x==1 never
holds, and y is never
assigned a 1.

pc1=l0(pc1,x):=(l1,1) /* x=1 */

pc2=r0/\y=0pc2=r1 /* y==0*/

pc2=r1pc2=r0 /* true */

pc2=r1/\x=1(pc2,y):=(r0,1)
/* x==1  y:=1 */

Weak transition fairness

P1::x=1
P2: do

:: y==0 ->
if
:: true
:: x==1 -> y=1
fi

od

Initially: x=0; y=0;

Under weak transition
fairness, P1 would assign
1 to x, but this does not
guarantee that 1 is
assigned to y and thus the
P2 loop will terminates,
since the transition for
checking x==1 is not
continuously enabled
(program counter not
always there).

Weak process fairness only
guarantees P1 to execute, but P2
can still choose the true guard.

Strong process fairness:
same.

Strong transition fairness

P1::x=1 P2: do

:: y==0 ->
if

:: true
:: x==1 -> y=1

fi
od

Initially: x=0; y=0;

Under strong transition
fairness, P1 would assign
1 to x. If the execution was
infinite, the transition
checking x==1 was
infinitely often enabled.
Hence it would be
eventually selected. Then
assigning y=1, the main
loop is not enabled
anymore.

Specifying fairness conditions

 Express properties over an alternating
sequence of states and transitions:
s0 1 s1 1 s2 …

 Use transition predicates exec .

Some fairness definitions

 Weak transition fairness:

/\ T (<>[]en []<>exec).

Equivalently: /\a T ¬<>[](en /\¬exec)

 Weak process fairness:

/\Pi (<>[]enPi []<>execPi)

 Strong transition fairness:

/\ T ([]<>en []<>exec)

 Strong process fairness:

/\Pi ([]<>enPi []<>execPi)

exec is executed.

execPi some transition

of Pi is executed.

en is enabled.

enPi some transition of

process Pi is enabled.

enPi = \/ Pi en

execPi = \/ Pi exec

“Weaker fairness condition”

 A is weaker than B if B A.
(Means A has more executions
than B.)

 Consider the executions L(A)
and L(B). Then L(B) L(A).

 If an execution is strong
{process/transition} fair, then it
is also weak
{process/transition} fair.

 There are fewer strong
{process,transition} fair
executions.

Strong
transition
fair execs

Weak
process

fair execs

Weak
transition
fair execs

Strong
process

fair execs

Fairness is an abstraction; no scheduler
can guarantee exactly all fair executions!

Initially: x=0, y=0

P1::x=1
||

P2::do
:: x==0 -> y=y+1
:: x==1 -> break

od

x=0,y=0

x=0,y=1
x=1,y=0

x=1,y=1
x=0,y=2

x=1,y=2
Under fairness assumption (any of the four defined),
P1 will execute the assignment, and consequently, P2 will terminate.
All executions are finite and there are infinitely many of them, and
infinitely many states.
Thus, an execution tree (the state space) will potentially look like the
one on the right, but with infinitely many states, finite branching and
only finite sequences. But according to König’s Lemma there is no
such tree!

Model Checking under fairness

 Instead of verifying that the program
satisfies , verify it satisfies fair

 Problem: may be inefficient. Also fairness
formula may involves special arrangement for
specifying what exec means.

 May specialize model checking algorithm
instead.

Model Checking under Fairness

Specialize model checking. For weak process
fairness: search for a reachable strongly
connected component, where for each
process P either

 it contains on occurrence of a transition
from P, or

 it contains a state where P is disabled.

 Weak transition fairness: similar.

 Strong fairness: more difficult algorithm
(graph transformation).

Abstractions

(Book: Chapter 10.1)

How to fight the complexity
problem?

 Abstraction

 Compositionality

 Partial Order Reduction

 Symmetry

 Other model checking strategies:
Symbolic (BDD), Bounded Model
Checking (using SAT solving).

Abstraction

 Represent the program using a smaller
model.

 Pay attention to preserving the checked
properties.

 Do not affect the flow of control.

Main idea

 Use smaller data objects.

x:= f(m)

y:=g(n)

if x*y>0 then …

else …

x, y never used again.

How to abstract?

 Assign values {-1, 0, 1} to x and y.

 Based on the following connection:
sgn(x) = 1 if x>0,

0 if x=0, and
-1 if x<0.

sgn(x)*sgn(y)=sgn(x*y).

Abstraction mapping

 S - states, I - initial states. L(s) - labeling.

 R(S,S) - transition relation.

 h(s) maps s into its abstract image.
Full model -h Abstract model
I(s) -h I(h(s))
R(s, t) -h R(h(s),h(t))

Label(h(s))=Label(s)

Traffic light

example

go

stop

stop

go

stop

stop

go

stop

What do we preserve?

go

stop

stop

go

stop

Every execution of the
full model can be
simulated by an
execution of the reduced
one.

Every LTL property that
holds in the reduced
model hold in the full
one.

But there can be
properties holding for
the original model but
not the abstract one.

Preserved:
[](go->O stop)

go

stop

stop

go

stop

Not preserved:

[]<>go

Counterexamples

need to be

checked.

Homework: what is preserved in the
following buffer abstraction? What is not
preserved?

e

empty

quasi

full

q

q

q

f

CTL,
BDD representation
Symbolic model checking

Why CTL?
More efficient model checking algorithm (Polynomial).
Can express branching points (alternatives) in executions.

Why not CTL?
Cannot express fairness (use CTL*, loose complexity
advantage).
Hard to give counterexamples.

The debate is still ongoing…

Recall our state graph: reachable states, labeled with the
properties that hold in each state.
Linear view: look at all executions.
Branching View: Look at a tree that embeds also branching points

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Linear view: look at all executions.
Branching View: Look at a tree that embeds
also branching points

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=0
NC0,NC1

Turn=0
CR0,NC1

Turn=1
L0,L1

Model: “unfold”
the state graph.
Start with initial
state, generate
successors
(duplicate for
multiple
occurrences).
Infinite.

Turn=0
CR0,NC1

Computation Tree Logic
. . .

. . .

. . .

. . .

p p

p

. . .

. . .

. . .

. . .

EG p

p p p p

p

p p

AF p

State quantifiers: A (forall), E (exists)
Path quantifiers: X (=O), G (=[]), F (=<>), U.

Computation Tree Logic

q q

q

p

. . .

. . .

. . .

. . .

p

q

p

. . .

. . .

. . .

. . .

E pUq

p

A pUq

Example formulas

CTL formulas:

 mutual exclusion: AG (cs1 cs2)

 non starvation: AG (request AF
grant)

 The possibility of returning to
recoverable state not blocked:
AG EF rec

Model Checking M |= f

 The Model Checking algorithm works
iteratively on structure of formula.
on subformulas of f , from simpler subformulas
to more complex ones

 When checking subformula g of f we assume that
all subformulas of g have already been checked

 For subformula g, the algorithm returns

the set of states that satisfy g (Sg)

 The algorithm has time complexity: O(|M| |f|)
where |M| is the size of the global state space:
the (exponentially big) product of the processes.

Model checking f = EF g

Given a model M= < S, I, R, L >

and Sg the sets of states satisfying g in M

procedure CheckEF (Sg)

Q := emptyset; Q’ := Sg ;

while Q Q’ do

Q := Q’;

Q’ := Q { s | s' [R(s,s’) Q(s’)] }

end while

Sf := Q ; return(Sf)

g

g

g

f

f

f

f

f

f

f

Example: f = EF g

Model checking f = EG g

CheckEG gets M= < S, I, R, L > and Sg

and returns Sf

procedure CheckEG (Sg)

Q := S ; Q’ := Sg ;

while Q Q’ do

Q := Q’;

Q’ := Q { s | s' [R(s,s’) Q(s’)] }

end while

Sf := Q ; return(Sf)

g

g

g

g

g

g

Example: f = EG g

Binary decision diagrams
(BDDs) [Bryant 86]

 Data structure for representing
Boolean functions.

 Can represent sets of states and perform
operations on them.

 Boolean operations on BDDs can be
done in polynomial time in the BDD size.

 Assume that states in model M are
encoded by {0,1}n and described by
Boolean variables v1...vn

 A set of states can be represented by a
BDD over v1...vn

 R (a set of pairs of states (s,s’))
can be represented by a BDD over
v1...vn v1’...vn’

BDDs in model checking

BDD definition

 A tree representation of a Boolean formula.

 Each leaf represents 0 (false) or 1 (true).

 Each internal leaf represents a node.

 If we follow a path in the tree and go from a
node left (low) on 0 and right (high) on 1, we
obtain a leaf that corresponds to the value of
the formula under this truth assignment.

Example

a

b c

c c b b

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 0 0 11 1 0 1

OBDD: there is some fixed appearance
order between variables, e.g., a<b<c

(a/\(b\/¬c))\/(¬a/\(b/\c))

a

b b

c c c c

0 0 0 11 0 1 1

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 0 0 11 0 1 1

In addition, remove nodes with
identical children (low(x)=high(x)).

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 1

In addition, remove (shortcut) nodes
with identical children (low(x)=high(x)).
Apply bottom up until not possible.

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 1

In addition, remove (shortcut) nodes
with identical children (low(x)=high(x)).

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 1

In addition, remove (shortcut) nodes
with identical children (low(x)=high(x)).

Example, even parity, 3 bits

a

b b

c c c c

1 0 0 01 1 1 0

Apply reduce

a

b b

c c c c

01

Apply reduce

a

b b

c c c c

01

Apply reduce

a

b b

c c c

01

Apply reduce

a

b b

c c c

01

Apply reduce

a

b b

c c

01

f[0/x], f[1/x] (“restrict” algorithm)

 Goal: Obtain the replacement of a variable x
by 0 or 1, in formula f, respectively.

 For f[0/x], incoming edges to node x are
redirected to low(x), and x is removed.

 For f[1/x], incoming edges to node x are
redirected to high(x), and x is removed.

 Then we reduce the OBBD.

Calculate x

 x = [0/x]\/ [1/x]

 Thus, we apply “restrict” twice to and
then “apply” the disjunction.

Shannon expansion of Boolean
expression f.

 f=(¬x/\f[0/x])\/(x/\f[1/x])

 Thus, f#g, for some logical operator #

is f#g=(¬x/\f#g [0/x])\/(x/\f#g [1/x])=

(¬x/\f [0/x]#g [0/x])\/(x/\f [1/x]#g[1/x])

Now compute f#g recursively:
Let rf be the root of the OBDD for f, and rg be the

root of the OBDD for g.

 If rf and rg are terminals, then apply rf#rg.

 If both roots are same node (say x), then create
a low edge to low(rf)#low(rg), and a high edge
to high(rf)#high(rg).

 If rf is x and rg is y, and x<y, there is no x node
in g, so g=g[0/x]=g[1/x]. So we create a low
edge to low(rf)#g and a high edge to
high(rf)#g. The symmetric case is handled
similarly.

 Reduce.

Same subgraphs are not
needed to be explored again
(use memoising, i.e.,
dynamic programming,
complexity: exponential

2 x mult of sizes.

R1,S1

R6,S5

R2,S3 R3,S2

R3,S3 R4,S3

R5,S4

R6,S3

R4,S3

R4,S3

R5,S4 R6,S5

R6,S5

R6,S4

R6,S5

R5,S4 R6,S5

x

z

t

z

y

x

t

0 1 0 1

R1

R3

R2

R5

R6

R4

S1

S3

S2

S4 S5

x

z

z tt

t
t

y

Same subgraphs are not
needed to be explored again

(use memoising, i.e.,

dynamic programming,
complexity: exponential

2xmultiplications of sizes.

R1,S1

R6,S5

R2,S3 R3,S2

R3,S3 R4,S3

R5,S4

R6,S3

R4,S3

R4,S3

R5,S4 R6,S5

R6,S5

R6,S4

R6,S5

R5,S4 R6,S5

x

z

t

z

y

x

y

0 1 0 1

R1

R3

R2

R5

R6

R4

S1

S3

S2

S4 S5

x

z

z tt

t
t

y

Symbolic Model Checking

 Characterize CTL formulas using fixpoints.

 AF \/AX AF

 EF EX EF  Z. EX Z

 AG /\AX AG

 EG EX EG  Z. EX Z

 A U = \/(/\AX U)

 E U = (EX U) Z. (EXZ)

 A R = /\(\/AX R)

 E R = (EX R)  Z. (EXZ)

Representing the successor
relation formula R

 A relation between the current state and the next
state can be represented as a BDD with prime
variables representing the variables at next states.

 For example:
p/\¬q/\r/\¬p’/\q’/\r’ says that the current state
satisfies p/\¬q/\r and the next state satisfies
¬p/\q/\r. (typically, for one transition, represented
as a Boolean relation).

 If ti represents this relation for transition i, we can

write for the entire code R=\/i ti.

Calculating (Z) for
(Z)= EX Z

 Z is a BDD.

 Rename variables in Z by their primed
version to obtain BDD Z’.

 Calculate the BDD R/\Z’.

 Let y1’…yn’ be the primed variables,
Then calculate the BDD
X= y1’… yn’ R/\Z’ to remove primed
variables.

 Calculate the BDD X.

Model checking Z (least fixed point)
For example, (Z)= EX Z
For formulas with main operator .

procedure Check LFP ()

Q :=False; Q’ := (Q) ;

while Q Q’ do

Q := Q’;

Q’ := (Q) ;

end while

return(Q)

Model checking Z (Greatest fixed point)
For example, (Z)= (EX Z)
For formulas with main operator .

procedure Check GFP ()

Q :=True; Q’ := (Q) ;

while Q Q’ do

Q := Q’;

Q’ := (Q) ;

end while

return(Q)

Conclusions

 Automatic verification:
Model + Specification + Model checking

 Explicit state space model checking,
based on automata theory.

 Extensions: Model checking with real
time, probability, direct on model,
partial order reduction…

