
Software Model Checking

Rupak Majumdar
MPI for Software Systems, Kaiserslautern, Germany

Software model checking is the algorithmic analysis of programs to prove properties of their execu-
tions. It traces its roots to logic and theorem proving, both to provide the conceptual framework
in which to formalize the fundamental questions and to provide algorithmic procedures for the
analysis of logical questions.

Initially, the focus of program verification research was on manual reasoning, and the develop-
ment of axiomatic semantics and logics for reasoning about programs provided a means to treat
programs as logical objects. As the size of software systems grew, the burden of providing en-
tire manual proofs became too cumbersome, and algorithmic techniques – at least for the more
mundane parts of the proof – were sought.

The search for more automation was influenced by three parallel but somewhat distinct deve-
lopments. First, development of program logics and associated decision procedures provided a
framework and basic algorithmic tools to reason about infinite state spaces. Second, automatic
model checking techniques provided basic algorithmic tools for state-space exploration. Third,
compiler analysis, formalized by abstract interpretation, provided formal connections between the
logical world of infinite state spaces and the algorithmic world of finite representations. Throug-
hout the 1980s and 1990s, the three communities developed with only occasional interactions.
However, in the last decade, there has been a convergence in the research directions and modern
software model checkers are a culmination of ideas that combine and perhaps supersede each area
alone. In particular, the term ßoftware model checker̈ıs probably a misnomer, since modern tools
simultaneously perform analyses traditionally classified as theorem proving, or model checking, or
dataflow analysis. We retain the term solely to reflect historical development.

One major goal of software model checking research today is to expand the scope of automated
techniques for program reasoning, both in the scale of programs handled and in the richness of
properties that can be checked, reducing the burden on the expert human programmer. We shall
see some algorithmic advances over the past few decades that have made this possible, at least
in certain domains. In particular, we shall discuss the algorithms implemented in software model
checkers such as Slam, Blast, and Yogi, in test generation tools such as DART, Cute, and Klee,
and in systematic exploration tools such as Verisoft and Chess. At the same time, we shall see
how ideas arising out of model checking have influenced software quality research.

Lecture schedule The lecture series has three goals. First, to trace some of the ideas that have
combined to produce automatic and precise software model checking tools. Second, to discuss
particular application domains to which the tools have been successfully applied. Third, to discuss
some interesting but open directions.

A very brief lecture schedule is as follows.

Lecture 1: Preliminaries: Symbolic analysis of systems.

Lecture 2: Computation of inductive invariants.

Lecture 3: Counterexample-guided abstraction refinement.

Lecture 4: Recent advances and open problems.

19



Background material The lecture series will roughly follow the survey article [1]. I shall assume
basic familiarity with algorithms, logic, and formal language theory, at the level of undergraduate
courses (e.g., at the level of [2] and [3]). A background in model checking, while helpful, will not
be assumed for the most part.

We shall focus on model checking techniques, but will not be able to cover decision procedures
(on which most modern systems are based). I suggest [4] for additional reading. I shall provide
pointers to more recent material during the lectures.

References

[1] R. Jhala, R. Majumdar. Software Model Checking. ACM Computing Surveys (CSUR), 41(4),
2009.

[2] T. H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to Algorithms. MIT Press,
2001.

[3] M. Sipser. Introduction to the Theory of Computation. PWS Pub. Co, 1996.

[4] A. Bradley, Z. Manna. The Calculus of Computation. Springer, 2007.

20


