
1.6 Exercises

Exercise 1 Use Tseitin’s transformation to convert x + (y · (z⊕ x)) into CNF.

Solution By introducing the following fresh variables
w� �� �

x + (y · (
p� �� �

(z · x) +

q� �� �
(z · x))� �� �

u

)

� �� �
v

we obtain the formula

w · (q ↔ (z · x)) · (p↔ (z · x)) · (u↔ (p + q)) · (v ↔ (y · u)) · (w ↔ (x + v))

We can now apply the rules

a↔ (b + c) ≡ (b + a) · (c + a) · (a + b + c) (1.6)
a↔ (b · c) ≡ (a + b) · (a + c) · (b + c + a) (1.7)

and get

w · (q + z) · (q + x) · (z + x + q) · (p + z) · (p + x) · (z + x + p) ·
(p + u) · (q + u) · (u + p + q) · (y + v) · (u + v) · (v + y + u) ·

(x + w) · (v + w) · (w + x + v)

Exercise 2 Follow the scheme in Table 1.2 in Section 1.2.1 to derive the Tseitin
clauses that characterise the n-ary Boolean formulas (y1 + y2 + · · · + yn) and
(y1 · y2 · · · · · yn).

Solution

• Disjunction:

x↔ (y1 + y2 + · · · + yn)
≡ (x→ (y1 + y2 + · · · + yn)) · ((y1 + y2 + · · · + yn)→ x)
≡ (x + y1 + y2 + · · · + yn) · ((y1 → x) · (y2 → x) · · · (yn → x))
≡ (x + y1 + y2 + · · · + yn) · (y1 + x) · (y2 + x) · · · (yn + x)

• Conjunction:

x↔ (y1 · y2 · · · · · +yn)
≡ (x→ (y1 · y2 · · · · · yn)) · ((y1 · y2 · · · · · yn)→ x)
≡ ((x + y1) · (x + y2) · · · · · (x + yn)) ·

�
(y1 · y2 · · · · · yn) + x

�

≡ ((x + y1) · (x + y2) · · · · · (x + yn)) · (y1 + y2 + · · · + yn + x)



Exercise 3 Which of the Boolean formulae below are satisfiable, and which
ones are unsatisfiable?

1. x + x · y

2. (x · (x→ y))→ y

3. x · ((x→ y)→ y)

Convert the formulae that are unsatisfiable into conjunctive normal form (either
using Tseitin’s transformation or the propositional calculus) and construct a
resolution refutation proof.

Solution

• satisfiable: 1, 3

• unsatisfiable: 2

(x · (x→ y))→ y ≡ (x · (x + y)) + y
≡ (x) · (x + y) · (y)

Resolution proof:

Res((y),Res((x), (x + y), x), y) ≡ �

Exercise 4 Construct a resolution refutation graph for the following unsatisfi-
able formula:

y1 · y2 · y3 · (y1 + x) · (y2 + x + z) · (y3 + z)

Solution The resolution graph for Exercise 4 is shown in Figure 1.17.

�
xx

y1 x y1x zz

y2 x z

y2

y3 zy3

Figure 1.17: Resolution graph for Exercise 4

Exercise 5 Apply the rules of the Davis-Putnam procedure (outlined in Sec-
tion 1.3.3) to the following formula until you obtain an equi-satisfiable formula
that cannot be reduced any further:

y1 · y2 · (y1 + x + z) · (y2 + x + z) · (y3 + z) · y4



Solution We perform the following steps:

Step Rule Formula

1 1-literal-rule on y1 y2 · (x + z) · (y2 + x + z) · (y3 + z) · y4

2 1-literal-rule on y2 (x + z) · (x + z) · (y3 + z) · y4

3 Affirmative-negative (x + z) · (x + z)
4 Resolution on x (z + z)

The resulting formula (z+z) is a tautology and cannot be eliminated by any
of the Davis-Putnam rules. Accordingly, the original formula must be satisfiable.

Exercise 6 Apply the Davis-Putnam-Logeman-Loveland (DPLL) procedure (de-
scribed in Section 1.3.4) to the following formula:

y1 · y2 · (y1 + x + z) · (y2 + x + z) · (y3 + z) · (y3 + z)

Solution Table 1.4 shows one possible scenario. Note that there is no value
of x that satisfies the formula. The reader may verify that choosing a decision
variable other than x in the third step also yields a contradiction.

Partial Assignment Clauses

{y1 �→ 1} (y2) (x z) (y2 x z) (y3 z) (y3 z)
{y1 �→ 1, y2 �→ 1} (x z) (x z) (y3 z) (y3 z)

No more implications, we guess x �→ 1
{y1 �→ 1, y2 �→ 1, x �→ 1} (z) (y3 z) (y3 z)
{y1 �→ 1, y2 �→ 1, x �→ 1, z �→ 1} (y3) (y3)
{y1 �→ 1, y2 �→ 1, x �→ 1, z �→ 1, y3 �→ 1} 0

Contradiction, we have to revert x �→ 1
{y1 �→ 1, y2 �→ 1, x �→ 0} (z) (y3 z) (y3 z)
{y1 �→ 1, y2 �→ 1, x �→ 0, z �→ 1} (y3) (y3)
{y1 �→ 1, y2 �→ 1, x �→ 0, z �→ 1, y3 �→ 1} 0

Contradiction, no more decisions to undo

Table 1.4: Assignment trail for Exercise 6

Exercise 7 Simulate the conflict-driven clause learning algorithm presented in
Section 1.3.5 on the following formula:

C0� �� �
(x + y + z) ·

C1� �� �
(x + y + z) ·

C2� �� �
(x + y + z) ·

C3� �� �
(x + y + z) ·

C4� �� �
(x + y + z) ·

C5� �� �
(x + y + z) ·

C6� �� �
(x + y + z) ·

C7� �� �
(x + y + z)



Solution It is obvious that one has to make at least two decisions before one
of the clauses becomes unit. If we start with the decisions x@1 and y@2, we
obtain the implication graph in Figure 1.18.

x@1

y@2

z@2
C0

C0

C1 �

Figure 1.18: First implication graph arising in Exercise 7

By means of resolution (c.f. Section 1.3.6) we obtain the conflict clause C8 ≡
Res(C0, C1, z) ≡ (x + y). We revert all decisions up to (but excluding) level 1,
which is the second-highest decision level occurring in C8. The clause C8 is unit
under the assignment x@1, thus implying the assignment y@1. We obtain the
implication graph in Figure 1.19. Again, there is a conflict.

x@1 y@1 z@1C8 C2 C3 �

Figure 1.19: Second implication graph arising in Exercise 7

The resulting conflict clause is C9 ≡ Res(C8,Res(C2, C3, z), y) ≡ (x), forcing
us to revert to decision level zero and set x to 0. Under this assignment, none
of the clauses is unit and we have to make a choice for either y or z. If we
choose y@1, the clause C4 becomes assertive and forces us to assign 0 to z.
This assignment, however, is in conflict with C5, and by means of resolution we
obtain the conflict clause C10 ≡ Res(C4, C5, z) ≡ (x + y).

C10 in combination with the unit clause C9 yields y@0. Under this assign-
ment, the clause C6 is unit, forcing us to assign 0 to z, which conflicts with clause
C7. Note that we obtained this conflict without making any decisions, i.e., we
found a conflict at decision level zero. Accordingly, the formula is unsatisfiable.

Exercise 8 Use the approach described in Section 1.3.6 to construct a resolu-
tion refutation proof for the formula presented in Exercise 7.

Exercise 9 Find an unsatisfiable core of the formula

(y) · (x + y + z) · (x + z) · (x + y) · (z + y) .

(You are not allowed to provide the set of all clauses as a solution.)
Is your solution minimal?



Solution The set of clauses

{(y), (x + y + z), (x + z), (z + y)}

forms a core of the formula in Exercise 9. This can be verified by means of
resolution:

Res((y), (x + y + z), y) ≡ (x + z)
Res((x + z), (x + z), x) ≡ (z)
Res((z), (z + y), z) =≡ (y)
Res((y), (y), y) = �

Moreover, the core is minimal, since removing any one of the clauses “breaks”
the core. Note that {(y), (x + y + z), (x + y), (z + y)} is an alternative minimal
solution.

Exercise 10 Simplify the following formula using the substitution approach de-
scribed in Section 1.3.10:

w · (q + z) · (q + x) · (z + x + q) · (p + z) · (p + x) · (z + x + p) ·
(p + u) · (q + u) · (u + p + q) · (y + v) · (u + v) · (v + y + u) ·

(x + w) · (v + w) · (w + x + v)

Solution Note that we do not know which clauses are “definitional” (i.e.,
introduce functionally dependent variables). In practice, this information is
often not available and inferring it is computationally prohibitively expensive.
Therefore we will not attempt to do so. Instead, we start by dividing the clauses
into sets according to the positive and negative occurrences of the literals as
follows:

Sx = {(q + x), (z + x + p), (w + x + v)}
Sx = {(z + x + q), (p + x), (x + w)}
Sy = {(v + y + u)}
Sy = {(y + v)}
Sz = {(q + z), (z + x + p)}
Sz = {(z + x + q), (p + z)}
Sp = {(z + x + p), (u + p + q)}
Sp = {(p + z), (p + x), (p + u)}
Sq = {(z + x + q), (u + p + q)}
Sq = {(q + z), (q + x), (q + u)}
Su = {(p + u), (v + y + u), (q + u)}
Su = {(u + p + q), (u + v)}
Sv = {(y + v), (u + v), (w + x + v)}
Sv = {(v + y + u), (v + w)}
Sw = {(w), (x + w), (v + w)}
Sw = {(w + x + v)}



Then, for each pair of sets S�, S�, we derive all possible resolvents and drop
the resulting tautologies. If the resulting set of clauses Res(S�, S�, �) is smaller
than S� ∪ S�, we replace the clauses S� ∪ S� with Res(S�, S�, �). Otherwise, we
retain the clauses S� ∪ S�. The set of resolvents of Sx and Sx has five elements:

Res(Sx, Sx, x) ≡ {(q + p), (q + w), (z + p + w), (w + z + v + q), (w + p + v)}

This is one clause less than Sx ∪ Sx. Accordingly, replacing the clauses Sx ∪ Sx

with the corresponding set of resolvents reduces the size of the formula. This
strategy is implemented in the SAT-solver MiniSAT [ES04b, EB05].

Exercise 11 Use the core-guided algorithm presented in Section 1.4.3 to deter-
mine the solution of the partial MAX-SAT problem

(x + y) · (x + z) · (x + z) · (y + u) · (y + u) · (x) · (y) ,

where only the clauses (x) and (y) may be dropped.

Solution Assume that the first unsatisfiable core we obtain is {(x+y), (x), (y)}.
Accordingly, we augment the clauses (x) and (y) with relaxation variables and
introduce a cardinality constraint which guarantees that at most one of these
clauses is dropped:

(x + y) · (x + z) · (x + z) · (y + u) · (y + u) · (r + x) · (s + y) ·
�

(r, s) ≤ 1

As illustrated in Figure 1.13, we can encode the constraint
�

(r, s) ≤ 1 as
(r + s), and we obtain the instance

(x + y) · (x + z) · (x + z) · (y + u) · (y + u) · (r + x) · (s + y) · (r + s) ,

which is still unsatisfiable, since

Res((x + z), (x + z), z) = (x)
Res((y + u), (y + u), u) = (y)
Res((r + x), (r + s), r) = (s + x)
Res((s + y), (s + x), s) = (x + y)
Res((y), (x + y), y) = (x)
Res((x), (x), x) = �

Accordingly, we add additional relaxation variables to the clauses (r + x)
and (s + y) in the next iteration of the algorithm in Figure 1.14 and obtain

(x+y) · (x+z) · (x+z) · (y+u) · (y+u) · (t+r+x) · (v+s+y) · (r + s) · (t + v)� �� �
cardinality constraints

It is now possible for the satisfiability solver to relax both clauses (x) and
(y) by choosing the assignment {t �→ 1, r �→ 0, v �→ 0, s �→ 1}, for instance.
Accordingly, the algorithm in Figure 1.14 reports that two clauses need to be
dropped to make the formula satisfiable.



Exercise 12 Use the algorithm presented in Section 1.4.4 to derive all minimal
correction sets for the unsatisfiable formula

C1����
(x) ·

C2����
(x) ·

C3� �� �
(x + y) ·

C4����
(y) ·

C5� �� �
(x + z) ·

C6����
(z) .

Solution (This example is borrowed from [LS08].) Due to the prioritisation
of unit clauses, the first unsatisfiable core reported by the satisfiability checker
is UC1 ≡ {(x), (x)}. By adding relaxation variables to all clauses of this core
and by constraining the respective relaxation literals, we obtain the formula

(r1 + x) · (r2 + x) · (x + y) · (y) · (x + z) · (z) · (r1 + r2)

Since dropping the clause (x) does not yield a satisfiable instance, the All-
SAT procedure returns C1 as the only MCS of size one. Accordingly, we block
the corresponding assignment by adding the blocking clause (r1):

(r1 + x) · (r2 + x) · (x + y) · (y) · (x + z) · (z) · (r1 + r2) · (r1)

and obtain a new core {(r1), (r1+x), (x+y), (y)}. Accordingly, UC2 = {C1, C2}∪
{C1, C3, C4}, and we obtain the instrumented formula

(r1 + x) · (r2 + x) · (r3 + x + y) · (r4 + y) · (x + z) · (z) · (r1) ·
�

(r1, r2, r3, r4) ≤ 2

The AllSAT algorithm determines all minimal correction sets for this for-
mula. Note that the clause (r1) prevents that the algorithm rediscovers the
MCS {C1} in this step. Since Res((r), (r1 + x)) ≡ (x), blocking C1 yields the
formula

(x) · (r2 + x) · (r3 + x + y) · (r4 + y) · (x + z) · (z) ·
�

(r1, r2, r3, r4) ≤ 2 ,

which is unsatisfiable. We obtain the new core {C1, C5, C6} and execute the
third iteration of the algorithm with UC3 = {C1, C2, C3, C4} ∪ {C1, C5, C6}.
The corresponding instrumented and constrained version of the original formula
is

(r1 + x) · (r2 + x) · (r3 + x + y) · (r4 + y) · (r5 + x + z) · (r6 + z)·
�

(r1, r2, r3, r4, r5, r6) ≤ 3

In this iteration, we obtain the MCSes {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5},
and {C2, C3, C6}. Adding the corresponding blocking clauses to Instrument(F )
results in an unsatisfiable instance and the algorithm terminates.

Exercise 13 Derive all minimal unsatisfiable cores for the formula presented
in Exercise 12.



Solution The set of MCSes for the formula in Exercise 12 is

{{C1}, {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5}, {C2, C3, C6}} .

We construct the corresponding minimal hitting sets as follows:

MCSes(F ) C1 C2 C3 C4 C5 C6

{C1} ×
{C2, C3, C5} × × ×
{C2, C3, C6} × × ×
{C2, C4, C5} × × ×
{C2, C3, C6} × × ×

Hitting sets: {C1, C2}, {C1, C3, C4}, {C1, C5, C6}


