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Why (formal) verification? 
• safety-critical applications: Bugs are unacceptable! 

– Air-traffic controllers 
– Medical equipment 
– Cars 

 
• Bugs found in later stages of design are expensive, e.g. 

Intel’s Pentium bug in floating-point division 
 

• Hardware and software systems grow in size and complexity: 
Subtle errors are hard to find by testing 
 

• Pressure to reduce time-to-market  
 
Automated tools for formal verification are needed 
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Formal Verification  
Given  

• a model of a (hardware or software) system and  

• a formal specification 

does the system model satisfy the specification? 

                     Not decidable! 

 

To enable automation, we restrict the problem to a 
decidable one: 

• Finite-state reactive systems 

• Propositional temporal logics 



4 

 
Finite state systems - 

examples 
  

• Hardware designs 

• Controllers (elevator, traffic-light) 

• Communication protocols (when ignoring the 
message content) 

• High level (abstracted) description of non 
finite state systems 
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Properties in temporal logic - 
examples 

 
• mutual exclusion:    

always ( cs1  cs2) 
 

• non starvation:   
always (request  eventually granted) 
 

• communication protocols:   
 ( get-message) until send-message 
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Model Checking [CE81,QS82] 

An efficient procedure that receives: 

 A finite-state model describing a system 

 A temporal logic formula describing a 
property 

 

It returns  

yes, if the system has the property 

no + Counterexample, otherwise  



7 

Model Checking 

 Emerging as an industrial standard tool for 
verification of hardware designs: Intel, 
IBM, Synopsis, … 
 

 Recently applied successfully also for 
software verification: SLAM (Microsoft), 
Java PathFinder  and SPIN (NASA), BLAST 
(EPFL), CBMC (Oxford),… 
 SLAM won the 2011 CAV award 
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Model of a system   
Kripke structure / transition system 

a,b a 

a b,c 

c 

a,c a,b b 
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Temporal Logics 

• Linear Time 
– Every moment has a unique 

successor 

– Infinite sequences (words) 

– Linear Time Temporal Logic (LTL) 

• Branching Time 
– Every moment has several 

successors 

– Infinite tree 

– Computation Tree Logic (CTL) 

• Temporal Logics 
– Express properties of event orderings in time 
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Propositional temporal logic 
In Negation Normal Form 

AP – a set of atomic propositions 

 

Temporal operators: 

Gp 

Fp 

Xp 

pUq  

 
Path quantifiers: A for all path 

                             E there exists a path 
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CTL/CTL* 

• LTL – interpreted over infinite computation paths 

• CTL – interpreted over infinite computation trees 

• CTL* - Allows any combination of temporal 
operators and path quantifiers. Includes both LTL 
and CTL 

 

 

                    ACTL / ACTL* 

The universal fragments of CTL/CTL* with only 
universal path quantifiers 
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CTL formulas: Example  
 
 

• mutual exclusion:   AG ( cs1  cs2) 
 

• non starvation:  AG( request  AF grant) 
 

• “sanity” check:  EF request 
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Model checking  

A basic operation: Image computation 

 

Given a set of states Q, Image(Q) 
returns the set of successors of Q 

 

Image(Q) = { s’ | s [ R(s,s’) Q(s)]} 
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Model checking AGq on M 

• Iteratively compute the sets Sj of states 
reachable from an initial state in j steps 
 

• At each iteration check whether Sj 
contains a state satisfying q. 
– If so, declare a failure 

 
• Terminate when all states were found. 

         Sk  i=0,k-1Si 
 
– Result: the set Reach of reachable states. 
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Model checking f = AG p  
Given a model M= < S, I, R, L > 
  and a set Sp of states satisfying  q in M 
 
procedure CheckAG (Sp ) 
 Reach =  
 S0 = I  
 k = 0  
 while Sk  Reach do 
    If Sk  Sp   return (M | AGq) 
    Sk+1  = Image(Sk)  
    Reach  = Reach  Sk 

  k = k+1 
 end while 
return( Reach, M |= AGp) 
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Model checking AGq 

• Also called  
forward reachability analysis 
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Mutual Exclusion Example 

N1     T1 

T1  S0   C1  S1      

C1   N1  S0 

N2     T2 

T2  S0   C2  S1 

C2   N2  S0 

|| 

• Two process mutual exclusion with shared semaphore 

• Each process has three states 

• Non-critical (N) 

• Trying (T) 

• Critical (C) 

• Semaphore can be available (S0) or taken (S1)  

• Initially both processes are in the Non-critical state and 

   the semaphore is available --- N1 N2 S0 
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Mutual Exclusion Example 
N1N2S0 

C1N2S1 
T1T2S0 

N1T2S0 T1N2S0 

N1C2S1 

T1C2S1 C1T2S1 

M ╞ AG  (C1  C2 ) 

The two processes are never in their  

critical states at the same time 
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Mutual Exclusion Example 
N1N2S0 

C1N2S1 
T1T2S0 

N1T2S0 T1N2S0 

N1C2S1 

T1C2S1 C1T2S1 

M ╞ AG  (C1  C2 ) 

 

               S0 
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Mutual Exclusion Example 
N1N2S0 

C1N2S1 
T1T2S0 

N1T2S0 T1N2S0 

N1C2S1 

T1C2S1 C1T2S1 

M ╞ AG  (C1  C2 ) 

 

               S1 
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Mutual Exclusion Example 
N1N2S0 

C1N2S1 
T1T2S0 

N1T2S0 T1N2S0 

N1C2S1 

T1C2S1 C1T2S1 

M ╞ AG  (C1  C2 ) 

 

              S2 



22 

Mutual Exclusion Example 
N1N2S0 

C1N2S1 
T1T2S0 

N1T2S0 T1N2S0 

N1C2S1 

T1C2S1 C1T2S1 

M ╞ AG  (C1  C2 ) 

                

                S3 
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Mutual Exclusion Example 
N1N2S0 

C1N2S1 
T1T2S0 

N1T2S0 T1N2S0 

N1C2S1 

T1C2S1 C1T2S1 

M ╞ AG  (C1  C2 ) 

S4   S0 … S3 
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Main limitation: 

The state explosion problem: 
Model checking is efficient in time but 

suffers from high space requirements: 
 
The number of states in the system model 

grows exponentially with  
 the number of variables 
 the number of components in the system 
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Symbolic model checking 

A solution to the state explosion problem which 

uses Binary Decision Diagrams  ( BDDs ) 

to represent the model and sets of  states.  

 

• Suitable mainly for hardware 

• Can handle systems with hundreds of Boolean 
variables 
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Binary decision diagrams  
(BDDs) 

 

• Data structure for representing  
Boolean functions 

• Often concise in memory 

• Canonical representation 

• Most Boolean operations on BDDs can 
be done in polynomial time in the BDD 
size 
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BDDs in model checking 

• Every set  A  U can be represented by 
its characteristic function 
                   1   if uA               
fA(u) =        0   if u  A 
 

• If the elements of A are encoded by 
sequences over {0,1}n  then fA is a Boolean 
function and can be represented by a BDD 
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Representing a model with BDDs 

• Assume that states in model M are 
encoded by {0,1}n  and described by 
Boolean variables  v1...vn 
 

• Reach, Sk can be represented  by BDDs 
over v1...vn 
 

• R (a set of pairs of states (s,s’) )  
can be represented by a BDD over  
v1...vn v1’...vn’ 
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Example:  representing a model  
with BDDs 

S = { s1, s2, s3 } 
R = { (s1,s2), (s2,s2), (s3,s1) } 
 
State encoding: 
s1:  v1v2=00    s2:  v1v2=01    s3:  v1v2=11 
 
For A = {s1, s2} the Boolean formula 

representing A: 
fA(v1,v2) = (v1  v2)   (v1 v2)  =  v1 
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fR(v1, v2, v’1, v’2 ) = 

(v1  v2  v’1 v’2)   

(v1  v2  v’1 v’2)  

(v1  v2  v’1  v’2 ) 

 

fA and fR can be represented by BDDs. 
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a 

b 

c 

1 0 

c 

1 1 

b 
c 

1 1 

b 

c c 

b 

0 1 1 0 

a 

b 

c c 

1 1 1 0 

c c c 

BDD for  f(a,b,c) = (a  b )  c 

Decision tree 

a 

b 

c 

1 0 

BDD 
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State explosion problem (cont.) 

 

• state of the art symbolic model 
checking can handle only systems with 
a few hundreds of Boolean variables 

 

Other solutions for the state explosion 
problem are needed 
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SAT-based model checking 

• Translates the model and the 
specification to a propositional formula 

• Uses efficient tools for solving the 
satisfiability problem  

 
Since the satisfiability problem is NP-
complete, SAT solvers are based on 
heuristics. 
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SAT solvers 

• Using heuristics, SAT tools can solve very 
large problems fast. 

• They can handle systems represented by 
formulas with a few millions of variables. 

 
GRASP (Silva, Sakallah) 
Prover (Stalmark) 
Chaff (Malik) 
MiniSat, … 
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SAT-based model checking 

 
• Translate the model and the 

specification to a propositional formula 
 

• Use efficient tools (SAT solvers) for 
solving the satisfiability problem  
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Bounded model checking 
for checking AGp 

• Unwind the model for k levels, i.e., 
construct all computation of length k 

• If a state satisfying p is 
encountered, then produce  
a counterexample 

 
The method is suitable for 
falsification, not verification 
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Bounded model checking with SAT 

• Construct a formula fM,k describing all possible 
computations of M of length k 

• Construct a formula f,k  expressing that  
=EFp holds within k computation steps 

• Check whether  f = fM,k  f,k   is satisfiable 

 

If f is satisfiable then  M | AGp 

The satisfying assignment is a counterexample 
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Example – shift register 

Shift register of 3 bits:   <x, y, z> 
Transition relation: 
R(x,y,z,x’,y’,z’) =    x’=y    y’=z     z’=1 
                                                    |____| 
                                     error 
Initial condition:   
I(x,y,z) =  x=0  y=0  z=0 
 
Specification: AG ( x=0  y=0  z=0) 
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Propositional formula for k=2 

fM = (x0=0  y0=0  z0=0)  

        (x1=y0  y1=z0  z1=1)  

        (x2=y1  y2=z1  z2=1) 

 

f  = Vi=0,..2 (xi=1  yi=1  zi=1) 

 

Satisfying assignment:   101  011  111  

This is a counter example!  
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A remark 

In order to describe a computation of 
length k by a propositional formula we 
need k copies of the state variables. 

With BDDs we use only two copies of 
current and next states. 
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Bounded model checking 

• Can handle LTL formulas, when 
interpreted over finite paths 

• Can be used for verification by 
choosing k which is large enough so 
that every path of length k contains a 
cycle 

• Using such a k is often not practical 
due to the size of the model 
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BDDs versus SAT 

• SAT-based tools are mainly useful 
for  bug finding while BDD-based 
tools are suitable for full verification 
 

• some examples work better with 
BDDs and some with SAT. 
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Verification with SAT solvers 
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Interpolation-Sequence  
Based Model Checking [VG09] 

Inspired by: 
• forward reachability analysis 
Combines: 
• Bounded Model Checking 
• Interpolation-sequence 
 
Obtains: 
• SAT-based model checking algorithm for 

full verification 



46 46 

                                ……  
Sn 

          S2  S1 INIT 
BAD 
¬q 

Forward Reachability Analysis 



47 47 

Forward reachability analysis 

• Sj is the set of states reachable from 
some initial state in j steps 

• termination when 
– either a bad state satisfying q is found 

– or a fixpoint is reached: 
 Sj  i=0,j-1Si  
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• Does the system have a counterexample  
of length k? 

)(),(),(),()( 121100 kkk VqVVTVVTVVTVINIT  

)()( 00 VqVINIT 

)(),()( 1100 VqVVTVINIT 

)(),(),()( 221100 VqVVTVVTVINIT 

. 

. 

. 
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INIT 

INIT I3 

BAD 
¬q 

I1 I2 

S1 S2 S3 



Interpolation 

• If A  B = false, there exists an interpolant  I for (A,B) 
such that: 

A  I 
I  B = false 

 I refers only to common variables of 
A,B 

(Craig,57) 



Interpolation (cont.) 

• Example:  
A = p  q,   B = q  r,    I = q 

 

• Interpolants from proofs 
given a resolution refutation (proof of 

unsatisfiability) of A  B,  

I can be derived in linear time. 
 

(Pudlak,Krajicek,97) 
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),()( 100 VVTVINIT 

• Given the following BMC formula k 

 
)(),(),( 121 kkk VqVVTVVT  

A B 

I 

1V i.e B, andA  of iablescommon var over the is I

FBI

IA







Interpolation in the context of 
model checking 

• I is over V1 

• A I 
– I over-approximates the set S1  

 

• I  B  F 
– States in I cannot reach a bug in k-1 

steps  
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),()( 100 VVTVINIT  )(),(),(),( 13221 kkk VqVVTVVTVVT  

A1 A2 A3 Ak Ak+1 

I1 I2 I3 Ik-1 Ik 

j1k1jj1j

1

10

V i.e ,A,,A and A,,A of iablescommon var over the is I

,













jjj

k

IAI

FITI

• The same BMC formula partitioned in a 
different manner: 
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• Can easily be computed. For 1 ≤ j < n 

– A = A1  …  Aj 

– B = Aj+1  …  An 

– Ij is the interpolant for the pair (A,B) 
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I1,1 

)(),(),()( 221100 VqVVTVVTVINIT 

I1,2 
I2,2 

)(),()( 1100 VqVVTVINIT 

I1 
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• A way to do reachability analysis using 

a SAT solver. 

• Uses the original BMC loop and adds 

an inclusion check for full verification. 

• Similar sets to those computed by 

Forward Reachability Analysis but over-

approximated. 
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• Use BMC to search for bugs. 

• Partition the checked BMC formula and 

extract the interpolation sequence 

 
)(),(),(),()( 121100 NNN VqTVTVVTVVTVINIT  

 

I1,N IN-1,N 
I2,N IN,N 
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INIT S1 

INIT 

S2 S3 

I1 I2 I3 

BAD 
¬q 

)(),(),(),()( 33221100 VqVVTVVTVVTVINIT  )(),()( 1100 VqVVTVINIT 

I1,1 

)(),(),()( 221100 VqVVTVVTVINIT 

I2,2 I1,2 

I1 I2 

I3,3 
I2,3 I1,3 
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Verification with SAT solvers 
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• Uses BMC for bug finding 
 

• Uses Interpolation-sequence for computing 
over-approximation of sets Sj of reachable 
states 
 

• Uses SAT solver for inclusion check for 
full verification 
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Always terminates 

• either when BMC finds a bug: 
M | AGq 
 

• or when all reachable states has been 
found:  
M |= AGq 
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),()( 100 VVTVINIT  )(),(),(),( 13221 kkk VqVVTVVTVVT  

A1 A2 A3 Ak Ak+1 

I1 I2 I3 Ik-1 Ik 

j1k1jj1j

1

10

V i.e ,A,,A and A,,A of iablescommon var over the is I

,













jjj

k

IAI

FITI

• The same BMC formula partitioned in a 
different manner: 
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I1,1 

)(),(),()( 221100 VqVVTVVTVINIT 

I1,2 
I2,2 

)(),()( 1100 VqVVTVINIT 

I1 
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Checking if a “fixpoint” has been reached 

• Ij  Vk=1,j-1 Ik 

 

• Similar to checking fixpoint in forward 

reachability analysis : 

Sj  Uk=1,j-1 Sk 

 

• But here we check inclusion for every 2  j  N 

– No monotonicity because of the approximation 

 

• “Fixpoint” is checked with a SAT solver 
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INIT S1 

INIT 

S2 S3 

I1 I2 I3 

BAD 
¬q 

)(),(),(),()( 33221100 VqVVTVVTVVTVINIT  )(),()( 1100 VqVVTVINIT 

I1,1 

)(),(),()( 221100 VqVVTVVTVINIT 

I2,2 I1,2 

I1 I2 

I3,3 
I2,3 I1,3 
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Notation:  
If no counterexample of length N or less 

exists in M, then: 
 
• Ij

k is the j-th element in the interpolation-
sequence extracted from the BMC-
partition of k  

 
• Ij = k=j,N Ij

k  [Vj  V] 

 
• The reachability vector is: 
  Î  = ( I1, I2, … , IN ) 
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function FixpointReached (Î ) // check Ij  Vk=1,j-1 Ik 

 j=2 
 while (j  Î .length) do 
  R = Vk=1,j-1 Ik 
   = Ij  R  // negation of IjR 
  if (SAT()==false) then return true 
  end if 
  j = j+1 
 end while 
 return false 
end function 
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Interpolation-Based Model 
Checking [McM03] 
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• We can check several bounds with one formula 

• Given a BMC formula with possibly several bad states 

),()( 100 VVTVINIT  ))(...)((),(),( 1121 kkk VqVqVVTVVT  

A B 

I 

1V i.e B, andA  of iablescommon var over the is I

FBI

IA




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• The interpolant represents an over-
approximation of reachable states after 
one transition. 

• Also, there is no path of length k-1 or less 
that can reach a bad state. 
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I1 

I2 

)(),()( 1100 VqVVTVINIT 

)(),()( 11001 VqVVTVI 

)(),()( 11002 VqVVTVI 
BAD 
¬q 
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I’1 

))()((),(),()( 2121100 VqVqVVTVVTVINIT 

))()((),(),()(' 21211001 VqVqVVTVVTVI 

))()((),(),()(' 2121100 VqVqVVTVVTVIk 

. 

. 

. 
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INIT S1 

INIT 

S2 S3 

BAD 
¬q 

))()((),(),()(' 21211002 VqVqVVTVVTVI  ))()((),(),()( 2110100 VqVqVVTVVTVINIT 

I’1 

))()((),(),()(' 21211001 VqVqVVTVVTVI 

I’2 
I’3 
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• When calculating the interpolant for the i-
th iteration, for bound k the following 
holds: 
– The interpolant represents an over-

approximation of reachable states after i 
transitions. 

– Also, it cannot reach a bad state in k-1+i steps 
or less. 
• It is similar to Ii calculated in ISB after k+i  iterations. 
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• The computation itself is different. 

– Uses basic interpolation. 

– Successive calls to BMC for the same 

bound. 

– Not incremental. 

• The sets computed are different. 

S1 I1 J1 
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• Experiments were conducted on two 

future CPU designs from Intel (two 

different architectures) 
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Spec #Var
s 

Bound 

(Ours) 

Bound 

(M) 

#Int 

(Ours) 

#Int 

(M) 

#BMC 

(Ours) 

#B
MC 

(M) 

Time 
[s] 

(Ours) 

Time [s] 

(M) 

F1 3406 16 15 136 80 16 80 970 5518 

F2 1753 9 8 45 40 9 40 91 388 

F3 1753 16 15 136 94 16 94 473 1901 

F4 3406 6 5 21 13 6 13 68 208 

F5 1761 2 1 3 2 2 2 5 4 

F6 3972 3 1 6 3 3 3 19 14 

F7 2197 3 1 6 3 3 3 2544 1340 

F8 4894 5 1 15 3 5 3 635 101 
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• False properties is always faster. 

• True properties – results vary. Heavier 

properties favor ISB where the easier 

favor IB. 

• Some properties cannot be verified by 

one method but can be verified by the 

other and vise-versa. 
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• A new SAT-based method for 
unbounded model checking. 
– BMC is used for falsification. 

– Simulating forward reachability analysis 
for verification. 

• Method was successfully applied to 
industrial sized systems. 
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Thank You 
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• 3-Valued BMC: 
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Checking and to 3-valued abstraction and 
Refinement, Ph.d. Thesis, Technion, March 
2010 
 
 



91 

Model Checking: 
From BDDs to Interpolation 

Lecture 4 

 
Orna Grumberg 

Technion 

Haifa, Israel 

 
Summer school at Bayrischzell 2011  



92 

3-Valued Abstraction in (Bounded) Model 
Checking for Hardware 

 
[Yadgar, Ph.d. thesis] 



93 

Motivation 

• Increase capacity of (Bounded) Model 
Checking 
– By abstracting out parts of the model 

• “Smart” abstraction 
– Automatic or manual 

• “Easy” abstraction 
– Abstract out inputs or critical nodes 

• Holy Grail: Change the level of BMC 
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Abstraction in Model Checking 
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Localization reduction 

Over-approximating abstraction:  
Abstract model contains more behaviors 

 
• Property is true on abstract model   

Property is true on the concrete model 
 

• Property is false: counterexample might be 
spurious 
 

• Refinement is needed (CEGAR) 
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• Finding cutpoints: 
computationally expensive or needs human 
expertise  

 

• False negative results: 
overhead in checking if counterexample is 
spurious 
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3-Valued Abstraction 

X 

X 

- Add a third value “X” (“Unknown”) 
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Introducing X (“Unknown”) 

• Property is true on abstract model   
Property is true on the concrete model 

 

• Property is false on abstract model   
Property is false on the concrete model 

 

• Property is X  needs refinement 
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3-Valued Abstraction 

X 
X 
X 
X 
X 

X 

X 

X 
X 

X 

X 

- Add a third value “X” 



100 

Outline 

• LTL Model Checking – Automata Approach 
– Kripke Structures and LTL 

– Büchi Automata 

– BMC 

• 3-Valued Abstraction 

• 3-Valued BMC (X-BMC) 
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Kripke Structure 

•                          over AP 

•   

• Can describe hardware circuits 
: ( {0,1})L S AP 

0( , , , )  M S s R L

{ , , }AP a b c

a=1 

001 

 

s0 s1 

b=1 
c=0 

110 

: {0,1}  APL S
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Büchi Automata 

•   

• Accepts     iff there is an accepting run for 
– Such that      is met infinitely often 

q0 

q2 q3 

q1 

b=0 

c=1 

a=1 

a=0 b=1 

a=1 b=1 

a=1 100,100,010,110,010,110,010,110… 

010,010,010,010… 

001,100,100,100… 

0( , , , , )      : 2    QB Q q Q w      

{ , , }

3{0,1} ,    { }a b c q 

ww


a=1 b=0 
c=0 

a=1 
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Büchi Automata 

•      can be represented as a function 
–    

q0 

q2 q3 

q1 



2 3( ,110,1)F q q

' ( , , )q F q nd

2 2( ,110,0)F q q

2 2 3( ,110) { , }q q q 

a=1 

a=0 b=1 

a=1 b=0 
c=0 

c=1 

b=0 

a=1 b=1 

a=1 a=1 

:F Q N Q 
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Büchi for LTL 

• Given          ,  build an automaton        for 

•                        

q0 q1 
c=0 c=1 

A  B 

P AFc

0{ }q 

{0,1}AP

0 0 0 0, , , ...q q q q 
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Model Checking 
• Let  

• Reduce Model Checking to Emptiness of E 

q0 q1 
c=1 

110 001 

 

110,q0 001,q0 

110,q1 

E M B 

110110110...w  

F S  

M

PB

0 0{(110, ),(001, )}F q q

P AFc

001,q1 

c=0 

{ , , }AP a b c

0{ }q 
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Model Checking 

• Fair Paths in E 




SCC 
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Bounded Model Checking (BMC) 

• Build a propositional representation of E 
– Describe paths of bounded length 

0 0 10 0
( ... ) ( ) ( , )

Mi

M i M j j
j i

v v v R v vI 
 

 

0 0 10 0
( ... ) ( ) ( , )

i B

i B j j i
B j i

v v v R v v fairI 
 

  

0
0

( ... ) ( ) ( )( )i i l i E j
l i l j i

fair v v v v v
   

   

0( ... )
i i

i i M B
v v   


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BMC 

( , )

    0

    ( )  {

        if  SAT ( )  return 

        ( )

    }

i

BMC M P

i

while true

false

inc i





• Check finite paths in E 
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3-Valued logic 

• Ternary domain D = { 0, 1, X }  
– X is “unknown” (not “don’t care”) 

 

 

 

 

 

 

– Ternary operators agree with Boolean operators on 
Boolean values 

0 1 X 

0 0 0 0 

1 0 1 X 

X 0 X X 

0 1 X 

1 0 X 

 V 0 1 X 

0 0 1 X 

1 1 1 1 

X X 1 X 
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3-Valued Abstraction 

[ '| ] 1    [ | ] 1M P M P    

[ '| ] 0    [ | ] 0M P M P    

M

'M

• Ternary domain D = { 0, 1, X }  
– X is “unknown” (not “don’t care”) 

 

X 
X 

X 

X 

X 
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3-Valued Kripke Structure 

•                               over AP 

•   

 

 

 

 

 

 

0' ( ', ' ', ')  M S s R L

{ , , }AP a b c

': ' {0,1, }APL S X

a=1 

X01 

 

s0 s1 

b=X 
c=0 

1X0 
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3-Valued LTL 

• Over AP 

•    

 

 

P A

|  {0,1, }X  

1    ,[ | ] 1
[ '| ] 0    ,[ | ] 0

          
M P

X otherwise

  
  

  
    


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3-Valued Büchi  

•    

•  3-Valued transition function      for  
–   

– Ternary variables and operators 

'       F 

{0,1, }APX

q0 

q2 q3 

q1 
3 1'( ,11 ,0)F q X q

a=1 

c=X 

':F Q N Q 
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3-Valued Model Checking 

• A short loop is a witness for a long concrete loop 
– Lower the bound required for finding bugs 



{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

' ' 'E M B 
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3-Valued Model Checking 



{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

{0,1} 

X 

• Checking might yield an “unknown” result. 

( ) {0,1, }E jv X 
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X-BMC 

X 
X 
X 
X 
X 

X 

X 

X 
X 

X 

X 

X 

X 

X 
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BMC - Reminder 

0 0 10 0
( ... ) ( ) ( , )

i B

i B j j i
B j i

v v v R v v fairI 
 

  

0
0

( ... ) ( ) ( )( )i i l j E j
l i l j i

fair v v v v v
   

   

0 0 10 0
( ... ) ( ) ( , )

i M

i M j j
M j i

v v v R v vI 
 

 
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X-BMC 

• Create 3-Valued propositional formulae (dual rail) 

'

'

( ', ) {

    0

    ( )  {

        if  ( 1 =1)  return   

        if  ( 1 =X)  return   

        ( )

    }

' '

' '

i i

M B

i i

M B

BMC M

i

while true

SAT false

SAT X

inc i



 

 



 

 
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Holy Grail - Revisited 

X 

X 
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199 2241 M/O M/O M/O M/O pass P6 

552 587 615 631 640 654 pass P6 

105 103 254 270 281 266 fail P1 

205 212 244 265 271 262 pass P2 

103 285 282 249 280 264 fail P3 

X X 323 342 365 412 pass P4 

108 110 264 252 267 278 fail P5 

168 525 12280 M/O M/O M/O fail P1 

235 411 479 M/O M/O M/O pass P2 

408 M/O M/O M/O M/O M/O fail P3 

F/N F/N M/O M/O M/O M/O F/N P4 

632 908 M/O M/O M/O M/O fail P5 

  Run Time (s) Result Property   

0.5M 0.6M 5.8M 5.9M 6.0M 6.1M # Gates     

71K 74K 108K 115K 132K 133K # Latches     

Abs 5 Abs 4 Abs 3 Abs 2 Abs 1 EXE Model     

  

  

  

  

  

BMC 

  

  

  

  

  

XBMC 

X X 

F/N F/N 

Experimental Results (EXE Cluster) 
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Conclusion 
• 3-Valued Abstraction 

– Models, specification and automata 
– Automatic or manual abstraction 
– Abstraction of inputs to the model 

• 3-Valued Bounded Model Checking 
– Enhanced performance 
– Increased capacity 
– Reduced counterexample lengths 
– Insensitive to size of irrelevant parts of the model 

– Allows checking higher level models 
• Change in methodology (!) 

• Unbounded Model Checking (Induction) 
• Automatic Refinement 
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Thank You 
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