
1

Model Checking:
From BDDs to Interpolation

Orna Grumberg

Technion

Haifa, Israel

Summer school at Bayrischzell 2011

2

Why (formal) verification?
• safety-critical applications: Bugs are unacceptable!

– Air-traffic controllers
– Medical equipment
– Cars

• Bugs found in later stages of design are expensive, e.g.

Intel’s Pentium bug in floating-point division

• Hardware and software systems grow in size and complexity:
Subtle errors are hard to find by testing

• Pressure to reduce time-to-market

Automated tools for formal verification are needed

3

Formal Verification
Given

• a model of a (hardware or software) system and

• a formal specification

does the system model satisfy the specification?

 Not decidable!

To enable automation, we restrict the problem to a
decidable one:

• Finite-state reactive systems

• Propositional temporal logics

4

Finite state systems -

examples

• Hardware designs

• Controllers (elevator, traffic-light)

• Communication protocols (when ignoring the
message content)

• High level (abstracted) description of non
finite state systems

5

Properties in temporal logic -
examples

• mutual exclusion:

always (cs1  cs2)

• non starvation:
always (request  eventually granted)

• communication protocols:
 ( get-message) until send-message

6

Model Checking [CE81,QS82]

An efficient procedure that receives:

 A finite-state model describing a system

 A temporal logic formula describing a
property

It returns

yes, if the system has the property

no + Counterexample, otherwise

7

Model Checking

 Emerging as an industrial standard tool for
verification of hardware designs: Intel,
IBM, Synopsis, …

 Recently applied successfully also for
software verification: SLAM (Microsoft),
Java PathFinder and SPIN (NASA), BLAST
(EPFL), CBMC (Oxford),…
 SLAM won the 2011 CAV award

8

Model of a system
Kripke structure / transition system

a,b a

a b,c

c

a,c a,b b

9

Temporal Logics

• Linear Time
– Every moment has a unique

successor

– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several

successors

– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logics
– Express properties of event orderings in time

10

Propositional temporal logic
In Negation Normal Form

AP – a set of atomic propositions

Temporal operators:

Gp

Fp

Xp

pUq

Path quantifiers: A for all path

 E there exists a path

11

CTL/CTL*

• LTL – interpreted over infinite computation paths

• CTL – interpreted over infinite computation trees

• CTL* - Allows any combination of temporal
operators and path quantifiers. Includes both LTL
and CTL

 ACTL / ACTL*

The universal fragments of CTL/CTL* with only
universal path quantifiers

12

CTL formulas: Example

• mutual exclusion: AG (cs1  cs2)

• non starvation: AG(request  AF grant)

• “sanity” check: EF request

13

Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q)
returns the set of successors of Q

Image(Q) = { s’ | s [R(s,s’) Q(s)]}

14

Model checking AGq on M

• Iteratively compute the sets Sj of states
reachable from an initial state in j steps

• At each iteration check whether Sj
contains a state satisfying q.
– If so, declare a failure

• Terminate when all states were found.

 Sk  i=0,k-1Si

– Result: the set Reach of reachable states.

15

Model checking f = AG p
Given a model M= < S, I, R, L >
 and a set Sp of states satisfying q in M

procedure CheckAG (Sp)
 Reach = 
 S0 = I
 k = 0
 while Sk  Reach do
 If Sk  Sp   return (M | AGq)
 Sk+1 = Image(Sk)
 Reach = Reach  Sk

 k = k+1
 end while
return(Reach, M |= AGp)

16

Model checking AGq

• Also called
forward reachability analysis

17

Mutual Exclusion Example

N1  T1

T1  S0  C1  S1

C1  N1  S0

N2  T2

T2  S0  C2  S1

C2  N2  S0

||

• Two process mutual exclusion with shared semaphore

• Each process has three states

• Non-critical (N)

• Trying (T)

• Critical (C)

• Semaphore can be available (S0) or taken (S1)

• Initially both processes are in the Non-critical state and

 the semaphore is available --- N1 N2 S0

18

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0 T1N2S0

N1C2S1

T1C2S1 C1T2S1

M ╞ AG  (C1  C2)

The two processes are never in their

critical states at the same time

19

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0 T1N2S0

N1C2S1

T1C2S1 C1T2S1

M ╞ AG  (C1  C2)

 S0

20

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0 T1N2S0

N1C2S1

T1C2S1 C1T2S1

M ╞ AG  (C1  C2)

 S1

21

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0 T1N2S0

N1C2S1

T1C2S1 C1T2S1

M ╞ AG  (C1  C2)

 S2

22

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0 T1N2S0

N1C2S1

T1C2S1 C1T2S1

M ╞ AG  (C1  C2)

 S3

23

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0 T1N2S0

N1C2S1

T1C2S1 C1T2S1

M ╞ AG  (C1  C2)

S4  S0 … S3

24

Main limitation:

The state explosion problem:
Model checking is efficient in time but

suffers from high space requirements:

The number of states in the system model

grows exponentially with
 the number of variables
 the number of components in the system

25

Symbolic model checking

A solution to the state explosion problem which

uses Binary Decision Diagrams (BDDs)

to represent the model and sets of states.

• Suitable mainly for hardware

• Can handle systems with hundreds of Boolean
variables

26

Binary decision diagrams
(BDDs)

• Data structure for representing
Boolean functions

• Often concise in memory

• Canonical representation

• Most Boolean operations on BDDs can
be done in polynomial time in the BDD
size

27

BDDs in model checking

• Every set A  U can be represented by
its characteristic function
 1 if uA
fA(u) = 0 if u  A

• If the elements of A are encoded by
sequences over {0,1}n then fA is a Boolean
function and can be represented by a BDD

28

Representing a model with BDDs

• Assume that states in model M are
encoded by {0,1}n and described by
Boolean variables v1...vn

• Reach, Sk can be represented by BDDs
over v1...vn

• R (a set of pairs of states (s,s’))
can be represented by a BDD over
v1...vn v1’...vn’

29

Example: representing a model
with BDDs

S = { s1, s2, s3 }
R = { (s1,s2), (s2,s2), (s3,s1) }

State encoding:
s1: v1v2=00 s2: v1v2=01 s3: v1v2=11

For A = {s1, s2} the Boolean formula

representing A:
fA(v1,v2) = (v1  v2)  (v1 v2) = v1

30

fR(v1, v2, v’1, v’2) =

(v1  v2  v’1 v’2) 

(v1  v2  v’1 v’2) 

(v1  v2  v’1  v’2)

fA and fR can be represented by BDDs.

31

a

b

c

1 0

c

1 1

b
c

1 1

b

c c

b

0 1 1 0

a

b

c c

1 1 1 0

c c c

BDD for f(a,b,c) = (a  b)  c

Decision tree

a

b

c

1 0

BDD

32

State explosion problem (cont.)

• state of the art symbolic model
checking can handle only systems with
a few hundreds of Boolean variables

Other solutions for the state explosion
problem are needed

33

SAT-based model checking

• Translates the model and the
specification to a propositional formula

• Uses efficient tools for solving the
satisfiability problem

Since the satisfiability problem is NP-
complete, SAT solvers are based on
heuristics.

34

SAT solvers

• Using heuristics, SAT tools can solve very
large problems fast.

• They can handle systems represented by
formulas with a few millions of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSat, …

35

Model Checking:
From BDDs to Interpolation

Lecture 2

Orna Grumberg

Technion

Haifa, Israel

Summer school at Bayrischzell 2011

36

SAT-based model checking

• Translate the model and the

specification to a propositional formula

• Use efficient tools (SAT solvers) for
solving the satisfiability problem

37

Bounded model checking
for checking AGp

• Unwind the model for k levels, i.e.,
construct all computation of length k

• If a state satisfying p is
encountered, then produce
a counterexample

The method is suitable for
falsification, not verification

38

Bounded model checking with SAT

• Construct a formula fM,k describing all possible
computations of M of length k

• Construct a formula f,k expressing that
=EFp holds within k computation steps

• Check whether f = fM,k  f,k is satisfiable

If f is satisfiable then M | AGp

The satisfying assignment is a counterexample

39

Example – shift register

Shift register of 3 bits: <x, y, z>
Transition relation:
R(x,y,z,x’,y’,z’) = x’=y  y’=z  z’=1
 |____|
 error
Initial condition:
I(x,y,z) = x=0  y=0  z=0

Specification: AG (x=0  y=0  z=0)

40

Propositional formula for k=2

fM = (x0=0  y0=0  z0=0) 

 (x1=y0  y1=z0  z1=1) 

 (x2=y1  y2=z1  z2=1)

f = Vi=0,..2 (xi=1  yi=1  zi=1)

Satisfying assignment: 101 011 111

This is a counter example!

41

A remark

In order to describe a computation of
length k by a propositional formula we
need k copies of the state variables.

With BDDs we use only two copies of
current and next states.

42

Bounded model checking

• Can handle LTL formulas, when
interpreted over finite paths

• Can be used for verification by
choosing k which is large enough so
that every path of length k contains a
cycle

• Using such a k is often not practical
due to the size of the model

43

BDDs versus SAT

• SAT-based tools are mainly useful
for bug finding while BDD-based
tools are suitable for full verification

• some examples work better with
BDDs and some with SAT.

44

Verification with SAT solvers

45 45

Interpolation-Sequence
Based Model Checking [VG09]

Inspired by:
• forward reachability analysis
Combines:
• Bounded Model Checking
• Interpolation-sequence

Obtains:
• SAT-based model checking algorithm for

full verification

46 46

 ……
Sn

 S2 S1 INIT
BAD
¬q

Forward Reachability Analysis

47 47

Forward reachability analysis

• Sj is the set of states reachable from
some initial state in j steps

• termination when
– either a bad state satisfying q is found

– or a fixpoint is reached:
 Sj  i=0,j-1Si

48 48

• Does the system have a counterexample
of length k?

)(),(),(),()(121100 kkk VqVVTVVTVVTVINIT  

)()(00 VqVINIT 

)(),()(1100 VqVVTVINIT 

)(),(),()(221100 VqVVTVVTVINIT 

.

.

.

49 49

INIT

INIT I3

BAD
¬q

I1 I2

S1 S2 S3

Interpolation

• If A  B = false, there exists an interpolant I for (A,B)
such that:

A  I
I  B = false

 I refers only to common variables of
A,B

(Craig,57)

Interpolation (cont.)

• Example:
A = p  q, B = q  r, I = q

• Interpolants from proofs
given a resolution refutation (proof of

unsatisfiability) of A  B,

I can be derived in linear time.

(Pudlak,Krajicek,97)

52 52

),()(100 VVTVINIT 

• Given the following BMC formula k

)(),(),(121 kkk VqVVTVVT  

A B

I

1V i.e B, andA of iablescommon var over the is I

FBI

IA





Interpolation in the context of
model checking

• I is over V1

• A I
– I over-approximates the set S1

• I  B  F
– States in I cannot reach a bug in k-1

steps

54 54

),()(100 VVTVINIT )(),(),(),(13221 kkk VqVVTVVTVVT  

A1 A2 A3 Ak Ak+1

I1 I2 I3 Ik-1 Ik

j1k1jj1j

1

10

V i.e ,A,,A and A,,A of iablescommon var over the is I

,













jjj

k

IAI

FITI

• The same BMC formula partitioned in a
different manner:

55 55

• Can easily be computed. For 1 ≤ j < n

– A = A1  …  Aj

– B = Aj+1  …  An

– Ij is the interpolant for the pair (A,B)

56 56

57 57

I1,1

)(),(),()(221100 VqVVTVVTVINIT 

I1,2
I2,2

)(),()(1100 VqVVTVINIT 

I1

58 58

• A way to do reachability analysis using

a SAT solver.

• Uses the original BMC loop and adds

an inclusion check for full verification.

• Similar sets to those computed by

Forward Reachability Analysis but over-

approximated.

59 59

• Use BMC to search for bugs.

• Partition the checked BMC formula and

extract the interpolation sequence

)(),(),(),()(121100 NNN VqTVTVVTVVTVINIT  

I1,N IN-1,N
I2,N IN,N

60 60

INIT S1

INIT

S2 S3

I1 I2 I3

BAD
¬q

)(),(),(),()(33221100 VqVVTVVTVVTVINIT )(),()(1100 VqVVTVINIT 

I1,1

)(),(),()(221100 VqVVTVVTVINIT 

I2,2 I1,2

I1 I2

I3,3
I2,3 I1,3

61

Model Checking:
From BDDs to Interpolation

Lecture 3

Orna Grumberg

Technion

Haifa, Israel

Summer school at Bayrischzell 2011

62

Verification with SAT solvers

63 63

• Uses BMC for bug finding

• Uses Interpolation-sequence for computing
over-approximation of sets Sj of reachable
states

• Uses SAT solver for inclusion check for
full verification

64 64

Always terminates

• either when BMC finds a bug:
M | AGq

• or when all reachable states has been
found:
M |= AGq

65 65

),()(100 VVTVINIT )(),(),(),(13221 kkk VqVVTVVTVVT  

A1 A2 A3 Ak Ak+1

I1 I2 I3 Ik-1 Ik

j1k1jj1j

1

10

V i.e ,A,,A and A,,A of iablescommon var over the is I

,













jjj

k

IAI

FITI

• The same BMC formula partitioned in a
different manner:

66 66

I1,1

)(),(),()(221100 VqVVTVVTVINIT 

I1,2
I2,2

)(),()(1100 VqVVTVINIT 

I1

67 67

Checking if a “fixpoint” has been reached

• Ij  Vk=1,j-1 Ik

• Similar to checking fixpoint in forward

reachability analysis :

Sj  Uk=1,j-1 Sk

• But here we check inclusion for every 2  j  N

– No monotonicity because of the approximation

• “Fixpoint” is checked with a SAT solver

68 68

INIT S1

INIT

S2 S3

I1 I2 I3

BAD
¬q

)(),(),(),()(33221100 VqVVTVVTVVTVINIT )(),()(1100 VqVVTVINIT 

I1,1

)(),(),()(221100 VqVVTVVTVINIT 

I2,2 I1,2

I1 I2

I3,3
I2,3 I1,3

69 69

Notation:
If no counterexample of length N or less

exists in M, then:

• Ij

k is the j-th element in the interpolation-
sequence extracted from the BMC-
partition of k

• Ij = k=j,N Ij

k [Vj  V]

• The reachability vector is:
 Î = (I1, I2, … , IN)

70 70

function FixpointReached (Î) // check Ij  Vk=1,j-1 Ik

 j=2
 while (j  Î .length) do
 R = Vk=1,j-1 Ik
  = Ij  R // negation of IjR
 if (SAT()==false) then return true
 end if
 j = j+1
 end while
 return false
end function

71 71

Interpolation-Based Model
Checking [McM03]

72 72

• We can check several bounds with one formula

• Given a BMC formula with possibly several bad states

),()(100 VVTVINIT ))(...)((),(),(1121 kkk VqVqVVTVVT  

A B

I

1V i.e B, andA of iablescommon var over the is I

FBI

IA





73 73

• The interpolant represents an over-
approximation of reachable states after
one transition.

• Also, there is no path of length k-1 or less
that can reach a bad state.

74 74

I1

I2

)(),()(1100 VqVVTVINIT 

)(),()(11001 VqVVTVI 

)(),()(11002 VqVVTVI 
BAD
¬q

75 75

I’1

))()((),(),()(2121100 VqVqVVTVVTVINIT 

))()((),(),()(' 21211001 VqVqVVTVVTVI 

))()((),(),()(' 2121100 VqVqVVTVVTVIk 

.

.

.

76 76

INIT S1

INIT

S2 S3

BAD
¬q

))()((),(),()(' 21211002 VqVqVVTVVTVI ))()((),(),()(2110100 VqVqVVTVVTVINIT 

I’1

))()((),(),()(' 21211001 VqVqVVTVVTVI 

I’2
I’3

77 77

• When calculating the interpolant for the i-
th iteration, for bound k the following
holds:
– The interpolant represents an over-

approximation of reachable states after i
transitions.

– Also, it cannot reach a bad state in k-1+i steps
or less.
• It is similar to Ii calculated in ISB after k+i iterations.

78 78

• The computation itself is different.

– Uses basic interpolation.

– Successive calls to BMC for the same

bound.

– Not incremental.

• The sets computed are different.

S1 I1 J1

79 79

• Experiments were conducted on two

future CPU designs from Intel (two

different architectures)

80 80

81 81

82 82

Spec #Var
s

Bound

(Ours)

Bound

(M)

#Int

(Ours)

#Int

(M)

#BMC

(Ours)

#B
MC

(M)

Time
[s]

(Ours)

Time [s]

(M)

F1 3406 16 15 136 80 16 80 970 5518

F2 1753 9 8 45 40 9 40 91 388

F3 1753 16 15 136 94 16 94 473 1901

F4 3406 6 5 21 13 6 13 68 208

F5 1761 2 1 3 2 2 2 5 4

F6 3972 3 1 6 3 3 3 19 14

F7 2197 3 1 6 3 3 3 2544 1340

F8 4894 5 1 15 3 5 3 635 101

83 83

• False properties is always faster.

• True properties – results vary. Heavier

properties favor ISB where the easier

favor IB.

• Some properties cannot be verified by

one method but can be verified by the

other and vise-versa.

84 84

• A new SAT-based method for
unbounded model checking.
– BMC is used for falsification.

– Simulating forward reachability analysis
for verification.

• Method was successfully applied to
industrial sized systems.

85

Thank You

86

Model checking:
• E.M. Clarke, A. Emerson, Synthesis of

Synchronization Skeletons for Branching Time
Temporal Logic, workshop on Logic of programs,
1981

• J-P. Queille, J. Sifakis, Specification and
Verification of Concurrent Systems in CESAR,
international symposium on programming, 1982

• E.M. Clarke, O. Grumberg, D. Peled,
Model Checking, MIT press, 1999

87

• BDDs:
R. E. Bryant, Graph-based Algorithms for Boolean
Function Manipulation, IEEE transactions on
Computers, 1986

• BDD-based model checking:
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J.
Hwang, Symbolic Model Checking: 10^20 States
and Beyond, LICS’90

• SAT-based Bounded model checking:
Symbolic model checking using SAT procedures
instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke,
M. Fujita, Y. Zhu, DAC'99

88

• Existential abstraction + data
abstraction:
E. M. Clarke, O. Grumberg, D. E. Long,
Model Checking and Abstraction,
TOPLAS, 1994.

• Localization reduction:
R. P. Kurshan, Computer-Aided
Verification of coordinating processes
– the automata theoretic approach,
1994

89

Interpolation based model checking:

• K. McMillan, Interpolation and SAT-Based
Model Checking, CAV’03

• T. Henzinger, R. Jhala, R. Majumdar,
K. McMillan, Abstractions from Proofs,
POPL’04

• Y. Vizel and O. Grumberg, Interpolation-
Sequence Based Model Checking, FMCAD’09

90

• 3-Valued BMC:
A. Yadgar, A. Flaisher, O. Grumberg, and M.
Lifshits, High Capacity (Bounded) Model
Checking Using 3-Valued Abstraction

• A. Yadgar, New Approaches to Model
Checking and to 3-valued abstraction and
Refinement, Ph.d. Thesis, Technion, March
2010

91

Model Checking:
From BDDs to Interpolation

Lecture 4

Orna Grumberg

Technion

Haifa, Israel

Summer school at Bayrischzell 2011

92

3-Valued Abstraction in (Bounded) Model
Checking for Hardware

[Yadgar, Ph.d. thesis]

93

Motivation

• Increase capacity of (Bounded) Model
Checking
– By abstracting out parts of the model

• “Smart” abstraction
– Automatic or manual

• “Easy” abstraction
– Abstract out inputs or critical nodes

• Holy Grail: Change the level of BMC

94

Abstraction in Model Checking

95

Localization reduction

Over-approximating abstraction:
Abstract model contains more behaviors

• Property is true on abstract model 

Property is true on the concrete model

• Property is false: counterexample might be
spurious

• Refinement is needed (CEGAR)

96

• Finding cutpoints:
computationally expensive or needs human
expertise

• False negative results:
overhead in checking if counterexample is
spurious

97

3-Valued Abstraction

X

X

- Add a third value “X” (“Unknown”)

98

Introducing X (“Unknown”)

• Property is true on abstract model 
Property is true on the concrete model

• Property is false on abstract model 
Property is false on the concrete model

• Property is X  needs refinement

99

3-Valued Abstraction

X
X
X
X
X

X

X

X
X

X

X

- Add a third value “X”

100

Outline

• LTL Model Checking – Automata Approach
– Kripke Structures and LTL

– Büchi Automata

– BMC

• 3-Valued Abstraction

• 3-Valued BMC (X-BMC)

101

Kripke Structure

• over AP

•

• Can describe hardware circuits
: ({0,1})L S AP 

0(, , ,) M S s R L

{ , , }AP a b c

a=1

001

s0 s1

b=1
c=0

110

: {0,1} APL S

102

Büchi Automata

•

• Accepts iff there is an accepting run for
– Such that is met infinitely often

q0

q2 q3

q1

b=0

c=1

a=1

a=0 b=1

a=1 b=1

a=1 100,100,010,110,010,110,010,110…

010,010,010,010…

001,100,100,100…

0(, , , ,) : 2 QB Q q Q w      

{ , , }

3{0,1} , { }a b c q 

ww


a=1 b=0
c=0

a=1

103

Büchi Automata

• can be represented as a function
–

q0

q2 q3

q1



2 3(,110,1)F q q

' (, ,)q F q nd

2 2(,110,0)F q q

2 2 3(,110) { , }q q q 

a=1

a=0 b=1

a=1 b=0
c=0

c=1

b=0

a=1 b=1

a=1 a=1

:F Q N Q 

104

Büchi for LTL

• Given , build an automaton for

•

q0 q1
c=0 c=1

A  B 

P AFc

0{ }q 

{0,1}AP

0 0 0 0, , , ...q q q q 

105

Model Checking
• Let

• Reduce Model Checking to Emptiness of E

q0 q1
c=1

110 001

110,q0 001,q0

110,q1

E M B 

110110110...w  

F S  

M

PB

0 0{(110,),(001,)}F q q

P AFc

001,q1

c=0

{ , , }AP a b c

0{ }q 

106

Model Checking

• Fair Paths in E




SCC

107

Bounded Model Checking (BMC)

• Build a propositional representation of E
– Describe paths of bounded length

0 0 10 0
(...) () (,)

Mi

M i M j j
j i

v v v R v vI 
 

 

0 0 10 0
(...) () (,)

i B

i B j j i
B j i

v v v R v v fairI 
 

  

0
0

(...) () ()()i i l i E j
l i l j i

fair v v v v v
   

   

0(...)
i i

i i M B
v v   



108

BMC

(,)

 0

 () {

 if SAT () return

 ()

 }

i

BMC M P

i

while true

false

inc i





• Check finite paths in E

109

3-Valued logic

• Ternary domain D = { 0, 1, X }
– X is “unknown” (not “don’t care”)

– Ternary operators agree with Boolean operators on
Boolean values

0 1 X

0 0 0 0

1 0 1 X

X 0 X X

0 1 X

1 0 X 

 V 0 1 X

0 0 1 X

1 1 1 1

X X 1 X

110

3-Valued Abstraction

['|] 1 [|] 1M P M P    

['|] 0 [|] 0M P M P    

M

'M

• Ternary domain D = { 0, 1, X }
– X is “unknown” (not “don’t care”)

X
X

X

X

X

111

3-Valued Kripke Structure

• over AP

•

0' (', ' ', ') M S s R L

{ , , }AP a b c

': ' {0,1, }APL S X

a=1

X01

s0 s1

b=X
c=0

1X0

112

3-Valued LTL

• Over AP

•

P A

| {0,1, }X  

1 ,[|] 1
['|] 0 ,[|] 0

M P

X otherwise

  
  

  
    



113

3-Valued Büchi

•

• 3-Valued transition function for
–

– Ternary variables and operators

' F 

{0,1, }APX

q0

q2 q3

q1
3 1'(,11 ,0)F q X q

a=1

c=X

':F Q N Q 

114

3-Valued Model Checking

• A short loop is a witness for a long concrete loop
– Lower the bound required for finding bugs



{0,1}

X

{0,1}

X

{0,1}

X

{0,1}

X

{0,1}

X

{0,1}

X

' ' 'E M B 

115

3-Valued Model Checking



{0,1}

X

{0,1}

X

{0,1}

X

{0,1}

X

{0,1}

X

{0,1}

X

{0,1}

X

• Checking might yield an “unknown” result.

() {0,1, }E jv X 

116

X-BMC

X
X
X
X
X

X

X

X
X

X

X

X

X

X

117

BMC - Reminder

0 0 10 0
(...) () (,)

i B

i B j j i
B j i

v v v R v v fairI 
 

  

0
0

(...) () ()()i i l j E j
l i l j i

fair v v v v v
   

   

0 0 10 0
(...) () (,)

i M

i M j j
M j i

v v v R v vI 
 

 

118

X-BMC

• Create 3-Valued propositional formulae (dual rail)

'

'

(',) {

 0

 () {

 if (1 =1) return

 if (1 =X) return

 ()

 }

' '

' '

i i

M B

i i

M B

BMC M

i

while true

SAT false

SAT X

inc i



 

 



 

 

119

Holy Grail - Revisited

X

X

120

199 2241 M/O M/O M/O M/O pass P6

552 587 615 631 640 654 pass P6

105 103 254 270 281 266 fail P1

205 212 244 265 271 262 pass P2

103 285 282 249 280 264 fail P3

X X 323 342 365 412 pass P4

108 110 264 252 267 278 fail P5

168 525 12280 M/O M/O M/O fail P1

235 411 479 M/O M/O M/O pass P2

408 M/O M/O M/O M/O M/O fail P3

F/N F/N M/O M/O M/O M/O F/N P4

632 908 M/O M/O M/O M/O fail P5

 Run Time (s) Result Property

0.5M 0.6M 5.8M 5.9M 6.0M 6.1M # Gates

71K 74K 108K 115K 132K 133K # Latches

Abs 5 Abs 4 Abs 3 Abs 2 Abs 1 EXE Model

BMC

XBMC

X X

F/N F/N

Experimental Results (EXE Cluster)

121

Conclusion
• 3-Valued Abstraction

– Models, specification and automata
– Automatic or manual abstraction
– Abstraction of inputs to the model

• 3-Valued Bounded Model Checking
– Enhanced performance
– Increased capacity
– Reduced counterexample lengths
– Insensitive to size of irrelevant parts of the model

– Allows checking higher level models
• Change in methodology (!)

• Unbounded Model Checking (Induction)
• Automatic Refinement

122

Thank You

123

Model checking:
• E.M. Clarke, A. Emerson, Synthesis of

Synchronization Skeletons for Branching Time
Temporal Logic, workshop on Logic of programs,
1981

• J-P. Queille, J. Sifakis, Specification and
Verification of Concurrent Systems in CESAR,
international symposium on programming, 1982

• E.M. Clarke, O. Grumberg, D. Peled,
Model Checking, MIT press, 1999

124

• BDDs:
R. E. Bryant, Graph-based Algorithms for Boolean
Function Manipulation, IEEE transactions on
Computers, 1986

• BDD-based model checking:
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J.
Hwang, Symbolic Model Checking: 10^20 States
and Beyond, LICS’90

• SAT-based Bounded model checking:
Symbolic model checking using SAT procedures
instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke,
M. Fujita, Y. Zhu, DAC'99

125

• Existential abstraction + data
abstraction:
E. M. Clarke, O. Grumberg, D. E. Long,
Model Checking and Abstraction, TOPLAS,
1994.

• Localization reduction:
R. P. Kurshan, Computer-Aided Verification
of coordinating processes – the automata
theoretic approach, 1994

126

Interpolation based model checking:

• K. McMillan, Interpolation and SAT-Based
Model Checking, CAV’03

• T. Henzinger, R. Jhala, R. Majumdar,
K. McMillan, Abstractions from Proofs,
POPL’04

• Y. Vizel and O. Grumberg, Interpolation-
Sequence Based Model Checking, FMCAD’09

127

• 3-Valued BMC:
A. Yadgar, A. Flaisher, O. Grumberg, and M.
Lifshits, High Capacity (Bounded) Model
Checking Using 3-Valued Abstraction

• A. Yadgar, New Approaches to Model
Checking and to 3-valued abstraction and
Refinement, Ph.d. Thesis, Technion, March
2010

