
Automata Models of Software

Javier Esparza

Technische Universität München

Joint work with Pierre Ganty

1



Plan

First lecture: Introduction

• From program reachability to non-disjointness

• Complexity analysis

Second lecture: A recent result by E. and Ganty, POPL 2011
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While-programs

while (ComOK && !EndOfRecord)

{ if (CancelStart) ComOK = false;

aStr = TempList->Strings[LineNumber];

PBar1->Position = (LN*100) / NumberOfLines;

if (aStr.Length() != 0)

{ Data = aStr.c_str();

if (Data[0] == ’:’)

{ if ((Data [7] == ’0’) && (Data [8] == ’0’))

{ if (!Communication (WRITE, Data)) ComOK = false;}

else { if ((Data [7] == ’0’) && (Data [8] == ’1’))

EndOfRecord = true;}

else {MB("Error!", NULL, MB_OK);}

else {MB(PChar("Error: Empty line"), NULL, MB_OK);}}
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Boolean while-programs

Abstract-check-refine approach to data:

x = y

x = 0

x 6= y

x = 1

x = 1

x := y

y := ¬y

In the following: program ⇒ boolean or finite-range program
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Automata model of while-programs

x = y

x = 0

x 6= y

x = 1

x = 1

x := y

y := ¬y

Tuple Ax, Ay, AP of NFAs

Program point reachable iff

L(Ax) ∩ L(Ay) ∩ L(AP ) 6= ∅
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Program reachability ⇒ non-disjointness

Preprocessing:

• Construct safety-equivalent program with instructions of the

form x = b or x := b.

x := ¬y

y = 0

y = 1

x := 1

x := 0
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Program reachability ⇒ non-disjointness

• One NFA Ax with two states for each boolean variable x

• One NFA AP with the program locations as states

• Alphabet: normalized program instructions, i.e., alphabet letters

x = b, x := b for every variable x and b ∈ {0, 1}

• Transitions correspond to the meaning of the alphabet letters:

E.g., there is a transition labeled by x=0

− from state 0 of the NFA for x to itself, and

− from the control state before an instruction x = 0 to the

control state after it.

• Additional self-loops on variable NFAs to model idleness:

− E.g., self-loops labeled by y=0 on every state of the NFA for

variable x.
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Program reachability ⇒ non-disjointness

x = 0

x := 0

y · · ·

x := 1

x := 0

x = 1

x := 1

y · · ·

x := 1y = 0

y = 1 x := 0

y = 0

y := 0

x · · ·

y := 1

y := 0

y = 1

y := 1

x · · ·

x := 1

x := 0

y = 0

y = 1
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Program reachability ⇒ non-disjointness

Theorem: The reachability problem for while-programs is reducible to

non-disjointness problem for NFAs, i.e., to the problem

Given: NFAs A1, . . . , An

Decide: Is L(A1) ∩ . . . ∩ L(An) 6= ∅ ?
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Program reachability ⇒ non-disjointness

Theorem: The reachability problem for while-programs is reducible to

non-disjointness problem for NFAs, i.e., to the problem

Given: NFAs A1, . . . , An

Decide: Is L(A1) ∩ . . . ∩ L(An) 6= ∅ ?

Theorem: The non-disjointness problem for NFAs is

(a) P-complete

(b) NP-complete

(c) PSPACE-complete

(d) EXPTIME-complete
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Bounded model checking

Examine only computations containing at most k reads/writes of

variables.
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Bounded model checking

Examine only computations containing at most k reads/writes of

variables.

Theorem: The k-non-disjointness problem for NFAs, i.e., the problem

Given: NFAs A1, . . . , An, bound k ≥ 0

Decide: Is L(A1) ∩ . . . ∩ L(An) ∩ Σ≤k = ∅ ?

is (a) P-complete

(b) NP-complete

(c) PSPACE-complete

(d) EXPTIME-complete
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Impact of control structures

• Procedures

• Multithreading

• Parametrization (particular case of process creation)

• Procedures + multithreading
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Procedural programs

call P

x = 0

x 6= y

x 6= 0

x = 1

x := y

y := ¬y

proc P
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Automata model

call P

x = 0

x 6= y

x 6= 0

x = 1

x := y

y := ¬y

proc P

One NFA for each boolean variable

A PDA (pushdown automaton) to

model control
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Automata model

call P

x = 0

x 6= y

x 6= 0

x = 1

x := y

y := ¬y

proc P

p0

p2

p5

p4

p3

q p0

x=0
−−−−−→ q p2

q p3

callP
−−−−−→ q p0 p2
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Program reachability → non-disjointness

Theorem: The reachability problem for boolean procedural programs

is reducible to the non-disjointness problem for NFAn× PDA, i.e., to

the problem

Given: NFAs A1, . . . , An, PDA P

Decide: Is L(A1) ∩ . . . ∩ L(An) ∩ L(P ) = ∅ ?
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Program reachability → non-disjointness

Theorem: The reachability problem for boolean procedural programs

is reducible to the non-disjointness problem for NFAn× PDA, i.e., to

the problem

Given: NFAs A1, . . . , An, PDA P

Decide: Is L(A1) ∩ . . . ∩ L(An) ∩ L(P ) = ∅ ?

Theorem: Non-disjointness of NFAn×PDA is EXPTIME-complete.
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Complexity of efficient algorithms

Global variables: NFAs G1, . . . , Gn

Local variables: NFAs L1, . . . , Lm

Control: PDA P

Complexity: O((|P | · 2n)3 · 2m)
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Bounded model checking

Examine only computations containing at most k reads/writes of

variables.

Theorem: k-non-disjointness of NFAn× PDA, i.e., the problem

Given: NFAs A1, . . . , An, PDA P , bound k ≥ 0

Decide: Is L(A1) ∩ . . . ∩ L(An) ∩ L(P ) ∩ Σ≤k = ∅ ?

is NP-complete.

17



Multithreaded while-programs

z = 0

z 6= y

z 6= 0

z = 1

z := y

y := z ∨ y

x = y

x = 0

x 6= y

x 6= 0

x = 1

x := y

y := ¬y

Assume all variables are global (or that local variables are

“embedded” into control).
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Multithreaded while-programs

Same automata model: tuple of NFAs

No conceptual difference to sequential products.

• One NFA for each variable

• One NFA for each thread

• Transitions labeled by program instructions.
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Multithreaded while-programs

Same automata model: tuple of NFAs

No conceptual difference to sequential products.

• One NFA for each variable

• One NFA for each thread

• Transitions labeled by program instructions.

However: two sources of complexity, threads and variables.

Problem remains PSPACE-complete for programs with fixed number

of variables (but arbitrary number of threads).
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Bounded-context model checking

Introduced by Qadeer and Rehof.

Context: computation segment without communication between

threads

Context-switch: interaction with a global variable (almost).

Reachability within k context-switches: reachability by a computation

with up to k reads/writes of global variables

(local variables “embedded ” in control)

Fact: Reachability within k context-switches reduces to

c · k-non-disjointness of NFAs and some constant c.

Theorem: Reachability within k context-switches for multithreaded

while-programs is NP-complete.
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Parametrized multithreaded while-programs

xn = y

xn = 0

xn 6= y

xn 6= 0

xn = 1

xn := y

y := ¬y

. . .x1 = y

x1 = 0

x1 6= y

x1 6= 0

x1 = 1

x1 := y

y := ¬y

• Fixed number of (w.l.o.g) shared variables

• n threads executing the same code (instances of a template).

Problem: prove that some safety property holds for all n
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Automata model: Petri nets

Automata model: NFAn× PN

• One NFA for each variable

• One NFA “with arbitrarily many tokens” for the threads
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Automata model: Petri nets

Automata model: NFAn× PN

• One NFA for each variable

• One NFA “with arbitrarily many tokens” for the threads

Theorem: Non-disjointness of NFAn× PN is EXSPACE-complete

(with appropriate definition)

Theorem: k-non-disjointness of NFAn× PN is NP-complete.
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Multithreaded procedural programs

call P

y = 0y 6= 0

x := 1

z = 0

z 6= y

z 6= 0

z = 1

call R

y := z ∨ y

call P

x = 0

x 6= y

x 6= 0

x = 1

call Q

y := ¬y

proc P

proc Q

proc R

thread 1 thread 2
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Multithreaded procedural programs

Automata model: NFAn× PDAm

• One NFA for each variable

• One PDA for each thread (no thread creation)
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Multithreaded procedural programs

Automata model: NFAn× PDAm

• One NFA for each variable

• One PDA for each thread (no thread creation)

Theorem: Non-disjointness of PDA2 is undecidable.
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Multithreaded procedural programs

Automata model: NFAn× PDAm

• One NFA for each variable

• One PDA for each thread (no thread creation)

Theorem: Non-disjointness of PDA2 is undecidable.

Theorem: k-non-disjointness of NFAn×PDAm is NP-complete.
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Summary

Programs Reachability k-reachability

flat PSPACE-complete NP-complete

procedural EXPTIME-complete NP-complete

multithreaded PSPACE-complete NP-complete

parametrized multithreaded EXSPACE-complete NP-complete

multithreaded procedural Undecidable NP-complete

25



Question

Can we go beyond k-reachability

while keeping NP-completeness?
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Patterns

Introduced by Kahlon, further studied by Ganty, Majumdar, and

Monmege, and then by E. and Ganty, POPL ’11.

A pattern is a regular expression of the form w∗
1
w∗

2
. . . w∗

n.

Intuition: explore ”in depth” the computations that obey the pattern.

Non-disjointness modulo a pattern:

Given: Machines M1, . . . ,Mn, pattern p

Decide: Is L(M1) ∩ · · · ∩ L(Mn) ∩ L(p) 6= ∅ ?
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Patterns

b := 0

x := 0

b := 1

x ≥ k

x < k

b = 1

x++

b = 0

Terminating computations require k context-switches.

But always one satisfying the pattern

(x := 0)∗ (b := 1 b := 0 b = 0 x++ x < k)∗ (b := 1 b = 1 x ≥ k)∗

28



Complexity

Theorem: Non-disjointness modulo a pattern for NFAn×PDAm is

NP-complete

Proof sketch: For the case n = 0, m = 2, and p = a∗
1
a∗

2
. . . a∗

n.

Let C(L) denote the commutative image of a language L

C( {aab, a, aba, ǫ} ) = { (2, 1), (1, 0), (0, 0) }
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⇔ L(P1 × p) ∩ L(P2 × p) = ∅

⇔ C(L(P1 × p)) ∩ C(L(P2 × p)) = ∅ (GS66)

⇔ F1 ∧ F2 is satisfiable

where F1, F2 formulas of existential Presburger arithmetic (NSS05).
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Complexity

Theorem: Non-disjointness modulo a pattern for NFAn×PDAm is

NP-complete

Proof sketch: For the case n = 0, m = 2, and p = a∗
1
a∗

2
. . . a∗

n.

Let C(L) denote the commutative image of a language L

C( {aab, a, aba, ǫ} ) = { (2, 1), (1, 0), (0, 0) }

L(P1) ∩ L(P2) ∩ L(p) = ∅

⇔ L(P1 × p) ∩ L(P2 × p) = ∅

⇔ C(L(P1 × p)) ∩ C(L(P2 × p)) = ∅ (GS66)

⇔ F1 ∧ F2 is satisfiable

where F1, F2 formulas of existential Presburger arithmetic (NSS05).

Satisfiability of existential Presburger arithmetic is NP complete.
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Multiparameter analysis

Size of the input may depend on parameters.

Complexity may be polynomial in one parameter and “necessarily

exponential” in another.

Relevant instances may have small values for the “critical” parameters
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Multiparameter analysis

We analyze the dependence of the complexity on four parameters:
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Multiparameter analysis

We analyze the dependence of the complexity on four parameters:

size of pattern ⇒ size of pattern

number of threads ⇒ number of NFAs and PDAs

size of threads ⇒ maximum size of a NFA/PDA

height of call graph ⇒ longest simple stack content

Observe: Recursion allowed. Height of the call graph = maximal

length of a simple path!
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Multiparameter analysis

We analyze the dependence of the complexity on four parameters:

size of pattern ⇒ size of pattern

number of threads ⇒ number of NFAs and PDAs

size of threads ⇒ maximum size of a NFA/PDA

height of call graph ⇒ longest simple stack content

Observe: Recursion allowed. Height of the call graph = maximal

length of a simple path!

Does the problem remain NP-complete if we fix the values of a subset

of the parameters?
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Standard NP-completeness theory . . .

Theorem: The following problems are NP-hard:

Instance: NFAs P1, . . . , Pn.

Question: Is
⋂n

i=1
L(Pi) ∩ L(p) 6= ∅ for the pattern p = a∗ ?

Instance: PDAs P1, . . . , Pn of fixed size and a pattern p.

Question: Is
⋂n

i=1
L(Pi) ∩ L(p) 6= ∅ ?

Instance: Two PDAs P1, P2 over the alphabet {a}.

Question: Is L(P1) ∩ L(P2) 6= ∅ ?
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The remaining case

The fixed-parameter problem is NP-complete for all cases but two:

• fixed values for all parameters.

Solvable in linear time, only finitely many instances!

• fixed number of threads and variables,

fixed height of call graph,

fixed size of pattern,

threads of arbitrary size

We show that this second case is polynomial.
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A polynomial algorithm

Input (say): PDAs P1, P2 with call graph of height at most 3,

pattern of size at most 5.
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A polynomial algorithm

Input (say): PDAs P1, P2 with call graph of height at most 3,

pattern of size at most 5.

L(P1) ∩ L(P2) ∩ L(p) = ∅

⇔ L(P1 × p) ∩ L(P2 × p) = ∅

⇔ C(L(P1 × p)) ∩ C(L(P2 × p)) = ∅ (GS66)

How do we check this in polynomial time?
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Parikh’s theorem

Theorem (Par66): For every PDA P there is a NFA A such that

C(L(P )) = C(L(A)) (a Parikh-NFA for P )

Theorem (EG11): PDAs with call stack of fixed height have

Parikh-NFAs of polynomial size.

Corollary: P1 × p and P2 × p have Parikh-NFAs A1, A2 of polynomial

size.

It remains to check in polynomial time whether

C(L(A1)) ∩ C(L(A2)) 6= ∅ holds for two given NFAs.
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Two-way counter machines

Two-way NFAs whose transitions are labeled with actions on a set of

counters:

• increase counter ci by 1

• decrease counter ci by 1 (blocks if cj = 0)

• check if ci = 0

36



Two-way counter machines

Two-way counter machine M recognizing C(L(A1)) ∩ C(L(A2)):

• M uses one counter for each alphabet letter of A1 and A2.

• M checks first if input belongs to C(L(A1)), then to C(L(A2)).

• For the check:

− M reads the input, counting the number of occurrences of

each letter, and then

− guesses a path of Ai in which each letter occurs the number

of times given by the counter.
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Great, but . . .

Theorem: The emptiness problem for 2-counter machines is

undecidable.
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Great, but . . .

Theorem: The emptiness problem for 2-counter machines is

undecidable.

Consider the following parameters:

• number of counters,

• number of times a boundary between input symbols is crossed,

and

• number of counter reversals.
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Great, but . . .

Theorem: The emptiness problem for 2-counter machines is

undecidable.

Consider the following parameters:

• number of counters,

• number of times a boundary between input symbols is crossed,

and

• number of counter reversals.

Theorem (GI 81): Emptiness of two-way counter machines with a

fixed number of counters, boundary crosses, and counter reversals can

be decided in polynomial time.
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In our case ...

• fixed number of counters: alphabet size bounded size of pattern;
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Conclusions

Programs with finite-range variables can be modeled by automata

Reachability reduces naturally to non-disjointness

Automata theory helps to determine the asymptotic complexity and

to identify tractable cases

Interesting question: identify interesting subsets of computations that

can be explored with reduced complexity.
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