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Dependability (Wikimedia)

Attributes - A way to assess the
Dependability of a system
Threats - An understanding of the
things that can affect the
Dependability of a system
Means - Ways to increase the
Dependability of a system
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Traceability Use Case: ISO 26262 – Functional Safety

What is functional safety?
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Traceability Use Case: ISO 26262 – Functional Safety

• The management of safety requirements includes 

◊ managing requirements, 

◊ obtaining agreement on the requirements, 

◊ obtaining commitments with those implementing the requirements, 
and 

◊ maintaining traceability 

• During the development of the software architectural 
design the following shall be considered:

◊ a) the verifiability of the software architectural design;
NOTE This implies bi-directional traceability. 

• The software unit design and implementation shall be 
verified in accordance with ISO 26262-8:

◊ b) the completeness regarding the software safety requirements 
and the software architecture through traceability; 
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Content and Motivation

• Presentation of key artifacts in systems engineering in 
logic

◊ Assertions about the system

• System models and their representation in logic

◊ Interfaces

◊ Architectures

• Key artifacts in systems engineering

◊ System level requirements

◊ Functional specification

◊ Architecture 

• Concepts relating assertions: logical dependence relations

• Concepts for relating artifacts

◊ Understanding the logical dependencies between artifacts

◊ Traceability: Intra- and inter-artifact links and traces
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Assertions
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Assertions

• A logical predicate p over a universe D is a mapping

p: D  IB

where D is a mathematical set also called the universe of 
discourse. 

• Often the elements d  D can be characterized by a set 
of attributes

xi: D  Ti for 1 ≤ i ≤ n

where 
Ti are the (data) types for these attributes and 
n is the number of attributes. 
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Example: Assertions

• For a simple universe of discourse Car representing cars, 
consider attributes such as

length: Car  IN

number_of_seats: Car  IN

speed: Car  IN

situation: Car  {city, country, high_way}

• Based on the attributes, given d  Car, we write logical 
expressions such as

speed(d)  50  situation(d) = city

• This notation can be simplified for a fixed car d:

speed  50  situation = city

• Such a logical expression referring to the attributes of the 
elements of the considered universe is called assertion. 
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Typing attributes

• In an assertion like

speed  50  situation = city

the attributes have types.

• Sometimes it is useful to indicate the types of attributes 
explicitly

(speed: IN, situation: {city, country, high_way}): 
speed  50  situation = city
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Notation

• For assertions Q the following shorthand notation is used:

X:Q for  x1, …, xn: Q 

X:Q for  x1, …, xn: Q 

where X = {x1, …, xn} are free variables in Q

Q iff Q  true  e.g.  x1, …, xn: Q 
where x1, …, xn are all the free variables in Q

Q iff Q
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Language of assertions

• Given a signature  of attributes 
by

LA() 

we denote the assertion language over signature  which 
is the set of assertions that can be formulated over 
signature . 

• Assertions are Boolean expresses and therefore all the 
logical operators can be applied to them
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Formalizing Domains
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From the informal to the formal

• In the beginning, properties of the universe are 
formulated in natural language, in general

“The airbag is activated within 200 msec whenever the crash sensor 
indicates a crash”

• The step to the formal means

◊ Derivation of a “data” model: Introducing a set of attributes

◊ Capturing properties by assertions in terms of these attributes

• This step into formalization has two aspects

◊ Abstraction: the attributes can only address a limited set of 
properties

◊ Precision: informal properties are made precise
This includes

• Decisions: there are usually several ways to make an informal property 
precise
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Assertions about Systems

• Assertions and languages of assertions can be built for 
many different universes – problem domains
Examples:

◊ Airplanes

◊ Medical devices

◊ Cars

◊ Banking

◊ …

• We are aiming at assertion languages for systems with 
emphasis on software systems and systems with 
embedded software
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Remark: difference between assertions and propositions

• An assertion P defines a property 

◊ By the attributes P it formulates a property about a system

situation = city  speed ≤ 50 

◊ A car may have this property or not

• A proposition is either true or false

◊ It either holds or not

(situation = city  speed ≤ 50) 

◊ This proposition is true if the specified property is true for all cars



Manfred Broy 17MOD SumScho 2012

Remark: difference between axioms and specifications

• Using an assertion P as a specification means that P
specifies a property that is required for the system under 
development

◊ By the attributes in P it formulates a specification about systems

situation = city  speed ≤ 50 

◊ A car may fulfill this specification or not

• An axiom is an assertion P that states a property about 
all systems 

◊ It holds for all systems

(speed ≤ 500) 

◊ Then P is a trivial specification

Note: The axioms describe the universe of systems under 
consideration, the assumptions about the considered 
universe of systems – they form the problem domain theory 
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Artifacts - Structure and Content 
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System Development

• In systems development typically a large number of 
descriptions and statements about systems are worked 
out

• This information is captured in documents we call 
artifacts

• Examples of artifacts

◊ List of requirements

◊ Architectures description

◊ Code listings

◊ Collection of test cases

◊ …
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Artifacts - Structure and Content 

• An artifact is a development document

• An artifact has structure and content

• An artifact contains content that is structured into 

◊ (finite) sets of content chunks as well as 

◊ finite sets of finite sets of content chunks and so on. 

• This way we get nested sets of content chunks forming 
content hierarchies.

• Typically content chunks are informal statements of 
assertions about the system under development (or more 
generally, its development process etc.)



Manfred Broy 21MOD SumScho 2012

Illustrating Examples: Content Chunks

• System level requirements (functional requirements)

“the car must not increase its speed without user’s control”

• System level functional specification

“the function acc (adaptive cruise control) accelerates the car up to 
the speed selected by the user, provided no obstacles are recognized 
in front” 

• Architecture specification

“the radar signal based sensor measures the distance to the car in 
front and sends it to the acc monitor every 100 ms” 
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From content chunks to assertions

• To go from content chunks such as

“the car must not increase its speed without user’s control”

“the function acc (adaptive cruise control) accelerates the car up to 
the speed selected by the user, provided no obstacles are recognized 
in front” 

needs modeling and formalization.

This involves the following steps

• Formalizing the elements of the universe – elicitation of 
the problem domain

◊ Selecting the attributes

◊ Defining basic propositions (called the problem domain theory)

(speed ≤ 500)

• Expressing the informal statement by an assertion
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Observation about the step of formalization

• The problem domain model has to be chosen in a way, 
that the informal statement can be captured

◊ “Expressiveness”

◊ This may require sophisticated models (talking about time, space, 
interaction, reaction, intension, …)

• There might be several ways to formalize an informal 
statement

◊ Eliminating linguistic ambiguity

• Usually it is not a good idea that all content chunks are 
formalized
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Relating Assertions

Given two assertions P and Q; 
what does logical dependency mean?
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Relating Assertions to Assertions - Implication

• Two assertions

P, Q

are in an implication relation if

(P  Q)

or vice versa

(Q  P)

• Related relations are 

(Q  P) 

or 

(P  Q) 
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Negating the independence conditions

Condition	 Negation	 Result	 Result	 Result	

$(PÙQ)	 Ø$(PÙQ)	 "Ø(PÙQ)	 "(ØPÚØQ)	 "(PÞØQ)	

$(ØPÙQ)	 Ø$(ØPÙQ)	 "Ø(ØPÙQ)	 "(PÚØQ)	 "(QÞP)	

$(PÙØQ)	 Ø$(PÙØQ)	 "Ø(PÙØQ)	 "(ØPÚQ)	 "(PÞQ)	

$(ØPÙØQ)	 Ø$(ØPÙØQ)	 "Ø(ØPÙØQ)	 "(PÚQ)	 "(ØPÞQ)	

	

D.H. Sanford: Independent 
Predicates. American Philosophical 
Quarterly 18:2, 1981, 171-174 
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Relating Assertions – Logical Independency

If every of the following four relations

(P  Q)

(P  Q)

(P  Q) 

(P  Q) 

holds then we call assertions P and Q logically independent.
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Example: Independence

• Consider the following assertions

P: situation = city 

Q: speed ≤ 50

• Whether these assertion are independent depends on the 
problem domain theory

◊ If we assume (as part of the problem domain theory)

(situation = city  speed ≤ 50)

P and Q are not independent

◊ If we assume no properties as part of the problem domain theory) 
P and Q are independent
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The Cases of Dependence

Tab. Logical Consequences of Negations of the Conditions of Logical Independence 

$pÙq $pÙØq $ØpÙq $ØpÙØq Implies consequence 

True True True True True independence 

True True True False " d: p(d) Ú q(d) unavoidance 

True True False True " d: p(d)  Ü q(d) implication 

True True False False " d: q(d) implication, unavoidance 

True False True True " d: p(d) Þ q(d) implication 

True False True False " d: p(d) implication, unavoidance 

True False False True " d: p(d) Û q(d) equivalence 

True False False False " d: p(d) Ù q(d) p and q tautologies 

False True True True " d: Øp(d) Ú Øq(d) mutual exclusion 

False True True False " d: p(d) Û Øq(d) antivalence 

False True False True " d: Øq(d) implication, mutual exclusion 

False True False False " d: Øp(d) Ù q(d) implication, mutual exclusion, unavoidance 

False False True True " d: Øp(d) implication, mutual exclusion 

False False True False " d: p(d) Ù Øq(d) implication,  

False False False True " d: Øp(d) Ù Øq(d) Øp and Øq tautologies 

False False False False False inconsistency 
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The Lattice of Dependence

 

 

True 

 

p Ú q               p Þ  q                       q Ü p Øp Ú Øq 

 

p Û Øq             q                       p                   Øp                        Øq                         p Û q 

 

p Ù q               p Ù Øq                       Øp Ùq Øp Ù Øq 

 

False 
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Inconsistency

• Assertions P and Q are called inconsistent if 

(PQ)

• If assertions P and Q are inconsistent, then both 
propositions 

(P  Q) 

(Q  P) 

hold, i.e. they are logically dependent. 
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Logical Overlap

• Two assertions P and Q are called logically overlapping iff

(PQ)

which is equivalent to the statement, 

(PQ)

• Then there is a non-trivial property R

◊ (nontrivial means that R holds) 

◊ that is implied both by assertion P and by assertion Q; i.e. 

(P  R) and (Q  R)

• We choose the strongest assertion R 

◊ that is implied both by assertion P and by assertion Q as follows:

R = PQ

• Property R is not trivially true (i.e. R) iff assertions P
and Q are overlapping. 
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Logical Overlap

• Not overlapping assertions are logically not independent, 
since

(PQ)

which transforms to

(PQ) 

and to

(PQ) 

(QP)

• In other terms, independent assertions are always 
overlapping.
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Example: overlapping assertions

• The assertions: 

P: speed ≤ 100

Q: speed ≥ 50

are not overlapping: 

(speed ≤ 100  speed ≥ 50)

• The assertions: 

P: speed ≥ 100

Q: speed ≤ 50

are overlapping: 

(speed ≥ 100  speed ≤ 50)

(speed ≤ 100  speed ≥ 50)
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Negating the independence conditions

Condition	 Negation	 Result	 Result	 Result	

$(PÙQ)	 Ø$(PÙQ)	 "Ø(PÙQ)	 "(ØPÚØQ)	 "(PÞØQ)	

$(ØPÙQ)	 Ø$(ØPÙQ)	 "Ø(ØPÙQ)	 "(PÚØQ)	 "(QÞP)	

$(PÙØQ)	 Ø$(PÙØQ)	 "Ø(PÙØQ)	 "(ØPÚQ)	 "(PÞQ)	

$(ØPÙØQ)	 Ø$(ØPÙØQ)	 "Ø(ØPÙØQ)	 "(PÚQ)	 "(ØPÞQ)	

	

D.H. Sanford: Independent 
Predicates. American Philosophical 
Quarterly 18:2, 1981, 171-174 
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System Properties at Different Levels of Abstractions: 
Relating Views
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Example: Relating Levels of Abstraction 

… 

 

crash Û crash_sensor 

 

air_bag Û activate_air_bag 
 

… 
 

 

Translator 
… 

 

crash Þ air_bag 
 

… 
 

Logical_level 

… 
 

crash_sensor Þ  
      activate_air_bag 

 
… 

Technical_level 
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Example: Relating Levels of Abstraction 

… 

 

crash Û crash_sensor 

 

air_bag Û activate_air_bag 
 

… 
 

 

Translator 
… 

 

crash Þ air_bag 
 

… 
 

Logical_level 

… 
 

crash_sensor Þ  
      activate_air_bag 

 
… 

Technical_level 
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Translators between Levels of Abstractions

• A specification given by a set S1  LA(1) of assertions 
over some attribute signature 1

is translated into 

• a specification S2  LA(2) over some attribute signature 
2

◊ where signatures 1 and 2 only partially overlap or are disjoint

• by a set T of assertions formulated over signatures 1 and 
2. 
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Translators between Levels of Abstractions

For a translation we require that for every assertion 

a1  LA(1) 

over signature 1 there exists an assertion 

a2  LA(2) 

over 2 such that the following formula is valid:

( T)  (a1  a2)

• Then the set T is called a translator from signature 1 to 
signature 2. 

• A set S1 of assertions is called a refinement of a set S2 of 
assertions according to translator T if

( T)  ( S1)   S2
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Translators between Levels of Abstractions

• If T is free of contradictions T is called consistent 
translator. 

• If for every assertion a1  LA(1) and every set S1 of 
assertions formulated over signature 1 and for every 
assertion a2  LA(2) and every set S2 of assertions 
formulated over signature 2

[( T)  ( S1)  a1]  [( S1)  a1]

[( T)  ( S2)  a2]  [( S2)  a2]

T is called unbiased translator between signatures 1 and 
2. 
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Why translators are useful?

• Translators relate logical assertions to technical/physical 
assertions

• They force to make explicit assumptions behind 
physical/technical designs

◊ As part of specifications

◊ To validate them – to discover invalid assumptions
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Logical Basis: Specifying Systems by Assertions

Goal:
Description of views of systems as 
captured by artifacts by sets of assertions 
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Here’s 
the 

problem 
world
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Here’s 
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Operator
Controls
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Sensors
b

c

d

e

f

Operatorh

g

i

Actuators

A slide due to Michael Jackson

What is 
a system?
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Here’s 
the 

problem 
world

An industrial press system

Here’s 
the 

machine
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Press Controller
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& Doors

Operator
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System and its context
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Basic System Notion: What is a discrete system (model)

A system has

• a system boundary that determines 

◊ what is part of the systems and 

◊ what lies outside (called its context)

• an interface (determined by the system boundary), which 
determines, 

◊ what ways of interaction (actions) between the system und its context are 
possible (static or syntactic interface)

◊ which behavior the system shows from view of the context (interface 
behavior, dynamic interface, interaction view)

• a structure and distribution with an internal structure, given

◊ by its structuring in sub-systems (sub-system architecture)

◊ by its states und state transitions (state view, state machines)

• quality profile

• the views use a data model

• the views may be documented by adequate models
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Interfaces
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Systems: the model

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface        (I u O) 

data stream of type T 

STREAM[T] = {IN\{0} ® T*}  

valuation of channel set C  

C = {C ® STREAM[T]} 

interface behavior for syn. interface (I u O) 

[I u O] = { I® Ã(O )} 

interface specification 

p: IÈO   ® IB 

represented as interface assertion S - logical formulae with 

channel names as attributes of type stream 

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

channel name channel type
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System Specification by Interface Assertions

Interface Assertion 

• Given a syntactic interface (IO) with 

◊ a set I of typed input channels and 

◊ a set O of typed output channels, 

The channels form attributes in assertions.

• an interface assertion is a logical formula with the 
channel identifiers in I and O as free logical variables 
denoting streams of the respective types.
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Example: Component interface specification

TMC

x ~ y 

x:T y:T

Input channel

Output channel

Interface assertion

Spec name
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Example: Component interface specification – Airbag Controller

 
An air bag controller 

 
AB_Cont 

  in    x: T 

  out  y: T 

  x >200> y 

 

x >200> y º (" t Î Time:   

     crash_sig Î x(t) Û act_airbag Î y(t+200)) 

AB_Cont

x >200> y 

x:{crash_sig} y:{act_airbag}
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Architectures

Can we give purely logical 
specifications of architecture?
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Specifying Architectures 

 

 

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
C1 

y7 : T’7 x7 : T7 

x5 : T5 y5 : T’5 

 
 

Syntactic Architecture 
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Composition and Decomposition of Systems

F1 Î  [I1� O1] 

F2 Î  [I2� O2] 

 

C1 = O1 Ç I2  

C2 = O2 Ç I1  

I = I1\C2 È I2\C1 

O =  O1\C1 È O2\C2 

 

F1ÄF2 Î [I �  O], 
 

(F1ÄF2).x = {z|O: x = z|I Ù z|O1 Î F1(z|I1) Ù z|O2 Î F2(z|I2)} 

I2\C1

O2\C2C1

C2O1\C1

I1\C2 F1 F2
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Interface specification composition rule
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Specifying Architectures 

 

 

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
C1 

y7 : T’7 x7 : T7 

x5 : T5 y5 : T’5 

 
 

Syntactic Architecture 
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Specifying Architectures 

Set of Composable syntactic Interfaces 

A set of component names K with a finite set of interfaces 

(Ik� Ok) for each identifier k Î K is called composable, if the 

following propositions hold: 

· sets of input channels Ik, k Î K, are pairwise disjoint, 

· sets of output channels Ok, k Î K, are pairwise disjoint, 

the channels in {c Î Ik: k Î K } Ç {c Î Ok: k Î K } have 

consistent channel types in {c Î Ik: k Î K } and   

{c Î Ok: k Î K }. 
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Specifying Architectures 

Syntactic Architecture  

A syntactic architecture A = (K, x) with interface (IA� OA) is given by a set K 

of component names with composable syntactic interfaces x(k) = (Ik� Ok) 

for k Î K.  

IA = {c Î Ik: k Î K }\{c Î Ok: k Î K }  set of input channels, 

DA = {c Î Ok:  k Î K }  set of generated channels, 

OA = DA \ {c Î Ik: k Î K }  set of output channels,  

ZA = DA\OA  set of internal channels  

CA = {c Î Ik: k Î K } È {c Î Ok: k Î K  set of all channels 

By (IA� DA) we denote the syntactic internal interface and by (IA� OA) we 

denote the syntactic external interface of the architecture. 
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Interpreted and Specified Architecture 

Definition. Interpreted Architecture  

An interpreted architecture (K, y) for syntactic architecture (K, x) 

associates an interface behavior y(k) Î  [Ik� Ok] , where   

x(k) = (Ik� Ok), with every component k Î K. 

Definition. Specified Architecture  

A specified architecture (K, z) for syntactic architecture (K, x) 

associates an interface assertion z(k) with every syntactic interface 
 x(k) = (Ik� Ok) and every component k Î K. 
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Interface Behavior of Interpreted Architectures: Glass Box View

For an interpreted architecture A  

the glass box interface behavior [´] A Î [IA� DA] is given by (let 

y(k) = Fk):   

([´] A)(x) =  

{ y Î A: $ z Î A: x = z|IA Ù y = z|DA Ù " k Î K: z|Ok Î Fk(z|Ik) } 

where the operator | denotes the usual restriction operator.  

 

    

   

 
D     

   

 
C 
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Interface Behavior of Interpreted Architectures: black box view 

 

In a black box view Ä A Î [IA� OA] we hide internal channels 

Ä A =  

{y Î O A: $ z Î     

   

 
C A : x = z|IA Ù y = z|OA Ù " k Î K: z|Ok Î Fk(z|Ik) } 

Ä A describes the interface behavior of the architecture. 
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Specifying Architectures by Assertions 

Given composable systems k  K with specifying interface 
assertions Ck the specification of the architecture reads

 {Ck: k  K}

and the interface assertion of the composed is given by 
hiding the internal channels in set Z

 Z:  {Ck: k  K}

 

 

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
C1 

y7 : T’7 x7 : T7 

x5 : T5 y5 : T’5 

 
 

Syntactic Architecture 

open (glass box)view

cosed (black  box) view
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Where are we?

• Representing artifacts by logical concepts - assertions

• Relating assertions by logical concepts

◊ Dependency, Overlap, Inconsistency

◊ Translators for assertions at different levels of abstraction

• Representing systems by assertions

◊ What is a system?

◊ How to define interfaces?

◊ What is an architecture?

◊ How to compose sub-systems by assertions in a modular way?
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Representing Artifacts by Assertions: 
Functional Specification – Feature Specification
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How to structure system functionality?

• Typically systems offer a rich functionality structured into 
functional features

• A functional feature can be represented by some interface 
behavior [IuO]

• Interface behavior of functional features can be 
composed the same way as sub-systems are composed

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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What is a feature …

• Is a feature just a name … ?

◊ If yes – for what?

◊ What is the relation of a feature tree to system models?

• What are relation between features?

◊ Feature interactions?

◊ Requires?

◊ Excludes?

• Is there a way to model features?

◊ How can we find and identify features of a system?

◊ What is the semantic interpretation of a feature tree?

• Is there a way to interpret relations between features 
such as feature interactions?
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Functional (Behavioral) Features

We concentrate on functional (behavioral) features!

◊ These are at the level of system level interface behavior!

• A (functional) feature is a sub-function of a multi-
functional system

◊ that serves a certain purpose
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Modeling functional (behavioral) features

• We give a interpretation of the notion of a (functional) 
feature in terms of the system interface model F  [IuO]

• The functionality of a system is modeled by its interface 
behavior

• A (functional) feature is modeled by the 

◊ projection applied to F to the sub-interface (I’O’) resulting in a 
sub-interface behavior F’  [I’O’] 

◊ absence of feature interactions is modeled by faithful projections

◊ feature interactions are modeled by modes
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Feature Specification – Constructive Approach
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Combining Functions without Interference

Given two functions F1 and F2 in isolation

We want to combine them into a function F1  F2
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Combining Functions without Interference

Their isolated combination
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Combining Functions with Feature Interaction 

If services F1 and F2 have feature interaction we get:

We explain the functional combination F1  F2 as a

refinement step
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The steps of function combination

Given the isolated function F1

We construct a refinement F’1

And combine F’1 with a refinement F’2 of F2
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Feature Specification – Analytic Approach
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Functional view: functional decomposition

• The system interface behaviour F
as specified by the system requirements 
specification is structured

◊ into a set H of sub-interfaces for sub-functions F1, ... , 
Fh

◊ for which a set M of mode channels is introduced

◊ such that the functions can be specified independently 
nevertheless capture their feature interactions

◊ each Fi sub-function is described by 

• a syntactic interface (including mode channels) and 

• an interface assertion Bi for each function
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Syntactic sub-interfaces

A typed channel set C’ is called a sub-type of a typed channel set C if  

• C’ is a subset of C 

• The message types of the channels in C’ are  
subsets of the message sets of these channels in C 

We write then 

C’ subtype C 

Then we denote for the channel history x Î C  by 

x|C’ Î !C  

the restriction of x to the channels and messages in C’ 
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Sub-types between interfaces

For syntactic interfaces (I u O) and (I’ u O’) where 

I’ subtype I and O’ subtype O 

we call (I’� O’) a sub-type of (I u O) and write: 

 (I’ u O’) subtype (I u O) 
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From overall syntactic system interfaces …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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to …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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sub-interfaces

F: Systemx1 : T1

x4 : T4

x2 : T2

y2 : T’2

y3 : T’3
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Projection

Given: 

 (I’ u O’) subtype (I u O) 

define for a behavior function F Î [I� O] its projection  

F†(I’� O’) Î [I’� O’]  

to the syntactic interface (I’� O’) by (for all x’ Î I ’ ): 

 

F†(I’� O’)(x’) =  {y|O’: $ x Î I : x’ = x|I’ Ù y Î F(x)} 

 

The projection is called faithful, if for all x Î dom(F)  

F(x)|O’ = (F†(I’� O’))(x|I’) 
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Example: Component interface specification – Airbag Controller

 
An air bag controller 

 
AB_Cont 

  in    x: T 

  out  y: T 

  x >200> y 

 

x >200> y º (" t Î Time:   

     crash_sig Î x(t) Û act_airbag Î y(t+200)) 

AB_Cont

x >200> y 

x:{crash_sig} y:{act_airbag}
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Example: Component interface specification – Airbag Controller

 
An air bag controller 

 
AB_Cont 

  in    x: T, m: {on, off} 

  out  y: T 

  x >200> y 

 

x >200> y º (" t Î Time:   

(ON(m, t+199) Ù crash_sig Î x(t)) Û act_airbag Î y(t+200) 

AB_Cont

x >200> y 

x:{crash_sig} y:{act_airbag}

m:{on, off}

ON(m, t) = if t = 0 then false elif on  m(t) then true 
elif off  m(t) then false else ON(m, t-1) fi
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Specifying Architectures by Assertions 

Given composable feature interface specifications h  H 
with specifying interface assertions Bh the assertion of the 
functional specification reads

 {Bh: h  H}

and the interface assertion of the composed is given by 
hiding the mode channels in M

 M:  {Bh: k  H}
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An interpreted feature tree

 F1, ..., n 

 

 F1, 2          ... Fk, k+1          ... Fn-1, n 

 

 F1 F2          ... Fk Fk+1          ... Fn-1 Fn 
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Artifacts: Structure and Content
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Artifacts: Structure and Content

• An artifact is a (perhaps virtual) document that

◊ has a structure

◊ provides some content

• This indicates that an artifact presents content in some 
structured way

• The content has 

◊ a syntactic form

◊ a semantics (obtained by the interpretation of the syntactic form)

• Content can be represented 

◊ informally (using natural language, diagrams etc.)

◊ formally (using formulas – in our case assertions)

• We call pieces of contents “content chunks”
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Formally: Named Content Chunks

• An elementary named content chunk is a pair (id, ct) 
where 

◊ id is a unique identifier (which may be typed) and

◊ ct is an elementary content chunk

• A composed named content chunk is a set of 

◊ elementary content chunks, or

◊ composed named content chunks 
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Hierarchies of named content chunks

• A composed named content chunk can represent a 
hierarchy of named content chunks:

(Air_Bag: Spec, 

{(Air_Bag_Safety: Req, {(ABReq1, “if crash then …”), 

…},

(Air_Bag_Reliability: Req: { … },

…

}

)

 Air_Bag: Spec 

 

 Air_Bag_Safety: Req          Air_Bag_Reliability: Req         ...                       

 

 (ABReq1, “if crash then …”)  ...  
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Formally: Artifacts

• An artifact is a hierarchy of named content chunks
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Artifacts and their Named Content Chunks

• Given an artifact E = (id, ct) its set NCoCh(E) of named 
content chunks is:

NCoCh((id, ct)) = {(id, ct)}

if ct is an elementary content chunk

NCoCh((id, ct)) = {(id, ct)}  ({NCoCh(t): t  ct})

if ct is a set of named content chunks

• NCoCh(E) denotes the set of named content chunks –
that are unique since the identifiers are unique

◊ allows forming finite hierarchies of named content chunks by 
nested sets of properties. 

◊ By construction, each content chunk in the hierarchy has a name 
and which each name content is associated. 
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Artifacts and their Content Chunks

• Given artifact E = (id, ct) we define its set 
Co(NCoCh(E)) 

of content chunks as follows:

Co({(id, ct)}) = {ct}

if ct is an elementary content chunk

Co({(id, ct)}) = {Co(NCoCh(t)): t  ct})

if ct is a set of named content chunks

Co(S1S2) = Co(S1)  Co(S2)

if S1 and S2 are nonempty sets

• If the content chunks are assertions, then the meaning of 
the artifacts is given by

 Co(CoCh(E))
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Artifacts as named hierarchies of content

With these concepts 

• An artifact (id, ct) is structured into a hierarchy of named 
content chunks

• NCoCh((id, ct)) yields the set of all named content chunks

• Co(NCoCh((id, ct))) yields the set of all elementary 
(unnamed) contents of artifact (id, ct) 

 Air_Bag: Spec 

 

 Air_Bag_Safety: Req          Air_Bag_Reliability: Req         ...                       

 

 (ABReq1, “if crash then …”)  ...  
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Traceability in Software and System Development
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Linking, Tracing, and Relating Artifacts

• A (bilateral) link t defines a directed relation between two 
named content chunks 

e and e’

of artifacts E and E’. 

(e, e’)  NCoCh(E)  NCoCh(E’)

◊ e is called the source of t and

◊ e’ is called the target of t

• We write

src(t) = e and trg(t) = e’
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Linking, Tracing: Relating Artifacts and their Content Chunks

• A trace is a nonempty finite sequence of links 

t0, t1, t2, …, tn
where the source of ti+1 is the target of ti:

trg(ti) = src(ti+1)    for i = 0, 1, …, n-1

We distinguish between links and traces that 

• relate the content chunks of one artifact, called intra-
artifact links, and links that 

• relate the content chunks e of one artifact E to those of a 
different artifact E’, called inter-artifact links. 
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Illustration: Tracing

 
  Requirements Specification Architecture Implementation 

 

intra-artifact link inter-artifact link

trace
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Illustration: Forward Tracing

  Requirements Specification Architecture Implementation 
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Illustration: Backward Tracing

  Requirements Specification Architecture Implementation 
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Meaning of Links and Traces

A link relates two syntactic named content chunks

• A link has a meaning that usually is related to the 
meaning of the content chunks it relates. 

• A link states a proposition about the relationship between 
its source and its target. 

• A link can be valid or invalid. 

◊ It is called valid, if the proposition associated with the link is true. 

◊ Otherwise it is called invalid. 
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Syntax and Meaning of Links

• Syntactically a link is 

◊ a relationship between named content chunks of artifacts. 

• Semantically a link expresses that 

◊ there is a particular property valid for the involved content chunks. 

Example: link t with 

trg(t) = “Product_Manager: Stakeholder” 

src(t) = “High_Usability: Quality_Attribute”. 

• Link is to express that the stakeholder Product_Manager
is the source of the quality requirement High_Usability. 

• In other terms, the link has the meaning

◊ (Product_Manager: Stakeholder, High_Usability: Quality_Attribute) 
 Source_of_Requirement

◊ where Source_of_Requirement is a relation between stakeholders 
and requirements. 
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Formalizing Links and Tracing

We distinguish the following concepts of links

• supplemental links: link t relating a and z documents 
relationships between content chunks a and z providing 
additional information not explicitly contained in artifacts 
Ek and Ek’; 

◊ Example: link between a stakeholder a and a requirement z that 
originates from that stakeholder.

• derived links: link t relating a and z documents 
relationships between chunks a and z that can be derived 
from its logical meaning and justified logically (or even 
proved) from the assertions in artifacts Ek and Ek’; 

◊ Example: specification of a functional property by assertion a and 
its implementation or refinement by assertion z such that z  a.
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Example: supplemental Link

R1: …

…

Rk: High usability

…

List of requirements
…

Product manager

Architect

…

List of stakeholders
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Example: derived Link

S1: …

…

Sj: Sensor AoG yields

true if and only if

airplane is on the

ground

Sj+1: AoG  Thrust

reversal cannot be

activated

…

Specification
R1: …

…

Rk: Thrust reversal can

only be activated, if

airplane is on the

ground

…

Requirements
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Multilateral Links

• A multilateral link t is a directed relation between two 
named sets of content chunks 

e and e’

of artifacts E and E’:

(e, e’)  (NCoCh(Ek))  (NCoCh(Ek’))

◊ e  NCoCh(Ek) is called the source of t and

◊ e’  NCoCh(Ek) is called the target of t

• We write

src(t) = e and trg(t) = e’
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Illustration: Multilateral Tracing

  Requirements Specification Architecture Implementation 
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Content of Multilateral Links

• Given multilateral link t relating between content chunks 

e and e’

of artifacts E and E’:

(e, e’)  (NCoCh(Ek))  (NCoCh(Ek’))

in case the contents Co(e) and Co(e‘) are assertions

the link relates two sets of of assertions.
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Representing Artifacts by Logic: System Requirements
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System level functional requirements

• The system interface behaviour F is specified by the 
system requirements specification 

A = {Ai: 1 ≤ i ≤ n}

where the Ai are interface assertions
Functional RequirementSafety Priority Component Function

A1 ... Yes high

A2 ... No medium

An ... no low
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Representing Artifacts by Logic: Functional Specification
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Function / Feature Hierarchy
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Functional view: functional decomposition

• The system interface behaviour F
as specified by the system requirements 
specification A = {Ai: 1 ≤ i ≤ n}
is structured

◊ into a set of sub-interfaces for sub-functions F1, ... , Fk

◊ that are specified independently by introducing a set 
M of mode channels to capture feature interactions

◊ each Fi sub-function is described by 

• a syntactic interface and 

• an interface assertion Bi such that

 {Bi: 1 ≤ i ≤ k}  A
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Representing Artifacts by Logic: Architecture
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Architecture

• Composition C1C2C3

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3
x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

x1 : T1

y6: T’6

x2 : T2

x6 : T6

x8 : T8

y8 : T’8C1

x3 : T3 y3 : T’3

x8 : T8

y8 : T’8 C2

y7 : T’7 x7 : T7

C3

y6: T’6

x4 : T4

x6 : T6

y4 : T’4

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

F:
 Z:  {Ck: k  K}
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Specifying Architectures by Assertions 

Given composable systems k  K with specifying interface 
assertions Ck the specification of the architecture reads

 {Ck: k  K}

and the interface assertion of the composed is given by 
hiding the internal channels in set Z

 Z:  {Ck: k  K}

 

 

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
C1 

y7 : T’7 x7 : T7 

x5 : T5 y5 : T’5 

 
 

Syntactic Architecture 

open (glass box)view

closed (black  box) view
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Three Artifacts



Manfred Broy 119MOD SumScho 2012

Three levels of Specification

• Requirements - system level

◊ List of requirements - functional system property

◊ Example: “The activation of safety relevant functions by the pilot is always 
double checked for plausibility by the system .“

• Functional specification - system level 

◊ decomposition of system functionality in hierarchy of (sub-)functions

◊ Specification of (sub-)functions

◊ Specification of dependencies (feature interactions) between (sub-) 
functions based on a mode concept

◊ Example: “Thrust reversal may only be activated, if the plane is on the 
ground.“

• Architecture specification - component level

◊ decomposition a systems in sub-systems (component)

◊ relationship to data flow diagram

◊ interface specification of component

◊ Example: “The weight sensor indicates that the plane is on the ground.“
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Three levels of system description in logic

• system level requirements

A =  {Ai: 1 ≤ i ≤ r}

• functional specification at system level - functionality

B =  {Bi: 1 ≤ i ≤ n}

• architecture specification

C =  {Ck: 1 ≤ k ≤ m}

• Correctness

◊ functional specification correct w.r.t to requirements: 

B  A

◊ architecture correct w.r.t to functional spec (let M be the set of mode 
channels): 

C   M: B
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Relational view: Inter-artifact links and traces

Functional RequirementSafety Priority Component Function

A1 ... Yes high

A2 ... No medium

An ... no low
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Illustration: correctness and refinement

  Requirements Specification Architecture Implementation 

every assertion in the 
specification has to be 
guaranteed by the assertions 
of the architecture 

Can we find 
and identify  
them?

  
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Illustration: Multilateral Tracing as refinement

  Requirements Specification Architecture Implementation 
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Guarantors and Guarantor Sets

• Let P be an assertion and R be a set of assertions. 

• A subset R’  R is called guarantor set for assertion P in 
set R if

(( R’)  P)

◊ In this case the assertions in set R’ guarantee logically assertion P.

• A guarantor set R’ for assertion P in R is called minimal, if 
every strict subset of set R’ is not a guarantor set for 
assertion P.

• A minimal guarantor set R’  R is called unique in set R if 
there do not exist different minimal guarantor sets in R. 
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Guarantors and Guarantor Sets

• A assertion Q is called weak guarantor for assertion P  R 
if it occurs in some minimal guarantor set for assertion P
in R.

• A assertion Q is called strong guarantor for P in R if 
assertion Q occurs in every guarantor set of assertion P in 
R.

• Note that there is some relationship between guarantors 
and the so-called Primimplikanten a la Quine
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Relationship: req spec to function spec - tracing

  

system level reqs  

A1 A2 A3 A4 A5 A6 A7 A8 A9    .  .  .   Ak 

sub-function reqs                  

B1                  

B2                  

B3                  

                  

                  

                  

...                  

                  

                  

                  

                  

Bn                  

 

Red: Bi is strong guarantor of Aj

Yellow: Bi is weak guarantor of Aj

Green: Bi is not a weak guarantor of Aj
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Relationship: architecture to requirements

  

system level reqs  

A1 A2 A3 A4 A5 A6 A7 A8 A9    .  .  .   Ak 

sub-system reqs                  

C1                  

C2                  

C3                  

                  

                  

                  

...                  

                  

                  

                  

                  

Cn                  

 

Red: Ci is strong guarantor of Aj

Yellow: Ci is weak guarantor of Aj

Green: Ci is not a weak guarantor of Aj



Manfred Broy 128MOD SumScho 2012

Tracing at a logical level

Requirements A = A1A2A3 …

Architecture C = C1C2C3 … 

Correctness architecture C  A

Tracing requirement k C  A1A2A3…Ak …

Expanding C C1C2C3 …  Ak

Weakening C (C1C’1)(C2C’2)(C3C’3) … 

Such that C’1C’2C’3 …  Ak

Conclusion:

If the architecture spec C is correct with respect to a 
particular requirement Ak then there exist assertions C’i
contained in the specifications Ci of the sub-systems of the 
architectures that guarantee Ak
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Analysis

• For every requirement Ak its “guarantors” C’i are different, 
in general

◊ Conclusion: Syntactic tracing does not work

• For requirement Ak

◊ there are weakest “guarantors” C’I
◊ its weakest “guarantors” C’i are not necessarily unique

◊ many of its “guarantors” C’i are not necessarily trivial (“true”)

• There are many links!



Manfred Broy 130MOD SumScho 2012

Inter-artifact Links: Functional Specification to Requirements

• Relating Functional Specifications to System Level 
Requirements

◊ The trace concept as introduced above can be used to relate the 
functional specification B to the requirement specification A. 

◊ Due to the specific structure of set B in terms of sub-functions this 
imposes a specific structure on the set A.

• A requirement Q in A is called dedicated functional 
feature k, if there exist only one strong trace to exactly 
one feature h with Bh  B.
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Inter-Artifact Traces: Relating Architecture to Requirements 

• Traces relate content chunks of architectural specification 
C to the content chunks of system level requirements 
specification A.

• A requirement Q in A is called sub-system requirement, if 
there exist only one strong trace to exactly one assertion 
P in C. 

◊ Then the system level requirement does only affect one subsystem 
(this is a very special case).
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Intra-artifact Links: System Level Requirements
Relating Content Chunks of Artifacts by Logic
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Well-Formedness of Sets of System Assertions

A set R of system requirements by assertions is called 

• consistent, if the following proposition holds

( R)

• non-overlapping, if (there is a relationship to case 
distinctions)

( R) 

• weakly independent, if for every pair of non-empty 
subsets R’, R’’  R of disjoint non-empty sets of 
assertions with Q =  R’, P =  R’’

(PQ) P and Q are consistent

(PQ) Q does not imply P

(PQ) P does not imply Q
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Non-overlapping: Sets of assertions forming case distinctions

• We consider a finite set of cases Qi and a finite set of 
consequences Pi, 1 ≤ i ≤ n. 

• We speak of a complete, disjoint case distinction if both 
the following two propositions hold

{Qi: 1 ≤ i ≤ n} completeness

(Qi  Qj) for all i ≠ j - disjointness

• By these conditions following propositions are equivalent

{Qi  Pi: 1 ≤ i ≤ n} disjunctive normal form

{Qi  Pi: 1 ≤ i ≤ n} implicative form

• The second form leads to a set {(Qi  Pi): 1 ≤ i ≤ n} of 
assertions that are non-overlapping
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Consistency

• Consistency for sets R of assertions

R

• Consistency of two assertions P and Q means [PQ]
which is equivalent to

[PQ]

[QP]

which is one of the conditions of logical independence.

• This shows that the fundamental requirement of 
consistency guarantees two conditions of logical 
independence.
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Analyzing System Level Requirements: Intra-Artifact Links

There are many papers and even standards on the quality 
of requirements. The IEEE standard Std 830-1998 (see 
[IEEE 98]) requires the following quality attributes for 
system and software requirements:

• completeness

• consistency

• unambiguousness/precision

• correctness (more precisely validity)

• understandability/clarity

• traceability

• changeability
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Formalization IEEE artifact quality attributes

• Notions from this list such as

◊ completeness

◊ correctness (more precisely validity – the requirement is what the 
stakeholder meant)

◊ understandability/clarity

cannot be explicitly addressed in our approach since they 
have to be analyzed on a different level. 

• They deal with properties of requirements that are not 
captured by our logical relations. 



Manfred Broy 138MOD SumScho 2012

Formalization IEEE artifact quality attributes

• Clarity and understandability is not a formal notion.

◊ depends on the skills and background of the people that read and 
write specifications. 

◊ This quality attribute is beyond our approach of formalization. 

• Precision can be achieved by formalization. 

• However, quality concepts such as

◊ consistency

◊ traceability

◊ changeability (to some extend)

are captured by our approach.
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Intra-artifact Links: Functional System Specification 
Relating Functional Features by Feature Interactions
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Function Hierarchy

intra-artifact link: feature interaction
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Intra-artifact links in functional feature specifications

Given (let be I1, O1, I2, O2 pairwise disjoint): F Î [I� O] 

 (I1uO1) subtype (I uO)        (I2uO2) subtype (I uO) 

there is a feature interaction from the feature  

F†(I2uO2) Î [I2uO2]    to     F†(I1uO1) Î [I1uO1] 

if  
projection F†(I\I2’� O1) is not faithful in F 
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Intra-artifact links in functional feature specifications

• If there is a feature interaction from functional feature k
to feature k‘ 

◊ There exists a mode channel from feature k to feature k‘

• If there is a mode channel m from feature k to feature k‘ 
and there is no feature interaction from feature k to
feature k‘ then

◊ m can be eliminated in the specification of feature k‘ and the mode
channel can be dropped
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Intra-artifact Links: Architecture 
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Analyzing Composition: Intra-Artifact Links and Relations

• Consider two realizable specifications C1 and C2 for 
composable systems with syntactic interfaces (I1O1) 
and (I2O2) into a system with syntactic interface (IO). 

• If specifications C1 and C2 are realizable, then C1C2 is a 
specification for the syntactic interface (IO) that is 

realizable.

• Realizability implies for C1 and C2:

I1:O1:C1 I2:O2:C2

• By composition we derive the specification 

Z:C1C2

where Z is the set of internal channels.

• Note: realizability implies consistency
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Analyzing Composition: Intra-Artifact Links and Relations

• If O1 ≠  and O2 ≠  then C1 and C2 are logically 
independent (if they are not trivial) since

[C1  C2]

[C2  C1]

cannot hold due to the fact that C1 and C2 talk about 
disjoint sets of output channels that cannot be constraint 
by the other assertion.
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Intra-Artifact Links for Architecture Specifications

• From the syntactic architecture we conclude which 
components are connected by channels. 

• Channels yield intra-artifact links for architectures. 

Note that strictly speaking, there may be channels used as 
input channels in components that do not depend on that 
input. 

• Then there is a syntactic dependency but not a behavioral 
dependency

• However, then the channel can be eliminated in the 
interface assertion
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Logical Independence of Functional System Specifications

• The set B consists of assertions being sub-function 
specifications

◊ Each assertion Bk  B specifies the interface behavior of a sub-
function. 

• Assume that these specifications are realizable

◊ As long as all interface assertions Bk  B for functional features in 
B are consistent, the set B is consistent, too. 

• A simple analysis shows that as long as the interface 
specifications of the individual functions are not trivial and 
realizable, the assertions in set B are pairwise

◊ logically independent

◊ consistent
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Logical Independence of Functional System Specifications

• Given two interface specifications Bk for syntactic 
interfaces (IkOk) and disjoint output sets with k = 1, 2 

that are realizable we get consistency 

(B1B2) 

for free. 

• Actually, we should see a functional specification rather 
as a set of assertions about sub-functions. 

• If interface assertions Q1 and Q2 for different features are 
not trivial, i.e. if 

Q1 and Q2

then we get weak independence of the assertions, since 
they refer to different input channels. 
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Change Management and Changeability: Impact 
Analysis for Change Requests
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Changeability and Impact Analysis

• Typically, in requirements management we have to revise 
requirements. 

• Requirements are

◊ changed and modified

◊ validated

◊ verified

◊ traced

◊ implemented

• One essential notion is the granularity of requirements. 
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Changeability and Impact Analysis

• For validation, refinement, implementation, tracing, and 
verification a well-chosen granularity of assertions is 
useful. 

◊ If the granularity is too coarse, a further decomposition is needed 
to address test cases. 

◊ If it is too fine too many tests are needed to cover all 
requirements.

• Typically in requirements engineering we deal with lists of 
requirements or – more abstractly – with sets R of 
requirements. 
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Changeability and Impact Analysis

• Actually, then the ultimate requirement given by the set R 
is 

 R

◊ So for the ultimate requirement the granularity of the requirements 
is not actually relevant. 

◊ However, it is relevant for the development activities related to 
requirements.

• What happens, if we change the granularity of 
requirements and go from set R with assertions 

P, Q  R to R’ = (R\{P, Q})  {PQ}? 

Obviously then

 R   R’

• Thus consistency and validity is not changed. 
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Concluding Remarks

• Artifacts represented by logic

◊ Logical representation of the content by assertions

• Dependencies based on logic

◊ Logical representation of dependencies

• Formalization of traceability

◊ Intra- and inter-artifact links

• Relating different levels of abstraction

• Engineering questions

◊ How many dependencies are there in systems today

◊ What is the complexity of relations between 

• Requirements and functional specification

• Functional specification and architecture

• Requirements and architecture

Next step: 
variability


