
Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Engineering Dependable Software Systems

Manfred Broy

Manfred Broy 2MOD SumScho 2012

Dependability (Wikimedia)

Attributes - A way to assess the
Dependability of a system
Threats - An understanding of the
things that can affect the
Dependability of a system
Means - Ways to increase the
Dependability of a system

Manfred Broy 3MOD SumScho 2012

Traceability Use Case: ISO 26262 – Functional Safety

What is functional safety?

Manfred Broy 4MOD SumScho 2012

Traceability Use Case: ISO 26262 – Functional Safety

• The management of safety requirements includes

◊ managing requirements,

◊ obtaining agreement on the requirements,

◊ obtaining commitments with those implementing the requirements,
and

◊ maintaining traceability

• During the development of the software architectural
design the following shall be considered:

◊ a) the verifiability of the software architectural design;
NOTE This implies bi-directional traceability.

• The software unit design and implementation shall be
verified in accordance with ISO 26262-8:

◊ b) the completeness regarding the software safety requirements
and the software architecture through traceability;

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

A Logical Approach to
Systems Engineering Artifacts and Traceability:

From Requirements to Functional and
Architectural Views

Manfred Broy

Manfred Broy 6MOD SumScho 2012

Content and Motivation

• Presentation of key artifacts in systems engineering in
logic

◊ Assertions about the system

• System models and their representation in logic

◊ Interfaces

◊ Architectures

• Key artifacts in systems engineering

◊ System level requirements

◊ Functional specification

◊ Architecture

• Concepts relating assertions: logical dependence relations

• Concepts for relating artifacts

◊ Understanding the logical dependencies between artifacts

◊ Traceability: Intra- and inter-artifact links and traces

Manfred Broy 7MOD SumScho 2012

Assertions

Manfred Broy 8MOD SumScho 2012

Assertions

• A logical predicate p over a universe D is a mapping

p: D  IB

where D is a mathematical set also called the universe of
discourse.

• Often the elements d  D can be characterized by a set
of attributes

xi: D  Ti for 1 ≤ i ≤ n

where
Ti are the (data) types for these attributes and
n is the number of attributes.

Manfred Broy 9MOD SumScho 2012

Example: Assertions

• For a simple universe of discourse Car representing cars,
consider attributes such as

length: Car  IN

number_of_seats: Car  IN

speed: Car  IN

situation: Car  {city, country, high_way}

• Based on the attributes, given d  Car, we write logical
expressions such as

speed(d)  50  situation(d) = city

• This notation can be simplified for a fixed car d:

speed  50  situation = city

• Such a logical expression referring to the attributes of the
elements of the considered universe is called assertion.

Manfred Broy 10MOD SumScho 2012

Typing attributes

• In an assertion like

speed  50  situation = city

the attributes have types.

• Sometimes it is useful to indicate the types of attributes
explicitly

(speed: IN, situation: {city, country, high_way}):
speed  50  situation = city

Manfred Broy 11MOD SumScho 2012

Notation

• For assertions Q the following shorthand notation is used:

X:Q for  x1, …, xn: Q

X:Q for  x1, …, xn: Q

where X = {x1, …, xn} are free variables in Q

Q iff Q  true e.g.  x1, …, xn: Q
where x1, …, xn are all the free variables in Q

Q iff Q

Manfred Broy 12MOD SumScho 2012

Language of assertions

• Given a signature  of attributes
by

LA()

we denote the assertion language over signature  which
is the set of assertions that can be formulated over
signature .

• Assertions are Boolean expresses and therefore all the
logical operators can be applied to them

Manfred Broy 13MOD SumScho 2012

Formalizing Domains

Manfred Broy 14MOD SumScho 2012

From the informal to the formal

• In the beginning, properties of the universe are
formulated in natural language, in general

“The airbag is activated within 200 msec whenever the crash sensor
indicates a crash”

• The step to the formal means

◊ Derivation of a “data” model: Introducing a set of attributes

◊ Capturing properties by assertions in terms of these attributes

• This step into formalization has two aspects

◊ Abstraction: the attributes can only address a limited set of
properties

◊ Precision: informal properties are made precise
This includes

• Decisions: there are usually several ways to make an informal property
precise

Manfred Broy 15MOD SumScho 2012

Assertions about Systems

• Assertions and languages of assertions can be built for
many different universes – problem domains
Examples:

◊ Airplanes

◊ Medical devices

◊ Cars

◊ Banking

◊ …

• We are aiming at assertion languages for systems with
emphasis on software systems and systems with
embedded software

Manfred Broy 16MOD SumScho 2012

Remark: difference between assertions and propositions

• An assertion P defines a property

◊ By the attributes P it formulates a property about a system

situation = city  speed ≤ 50

◊ A car may have this property or not

• A proposition is either true or false

◊ It either holds or not

(situation = city  speed ≤ 50)

◊ This proposition is true if the specified property is true for all cars

Manfred Broy 17MOD SumScho 2012

Remark: difference between axioms and specifications

• Using an assertion P as a specification means that P
specifies a property that is required for the system under
development

◊ By the attributes in P it formulates a specification about systems

situation = city  speed ≤ 50

◊ A car may fulfill this specification or not

• An axiom is an assertion P that states a property about
all systems

◊ It holds for all systems

(speed ≤ 500)

◊ Then P is a trivial specification

Note: The axioms describe the universe of systems under
consideration, the assumptions about the considered
universe of systems – they form the problem domain theory

Manfred Broy 18MOD SumScho 2012

Artifacts - Structure and Content

Manfred Broy 19MOD SumScho 2012

System Development

• In systems development typically a large number of
descriptions and statements about systems are worked
out

• This information is captured in documents we call
artifacts

• Examples of artifacts

◊ List of requirements

◊ Architectures description

◊ Code listings

◊ Collection of test cases

◊ …

Manfred Broy 20MOD SumScho 2012

Artifacts - Structure and Content

• An artifact is a development document

• An artifact has structure and content

• An artifact contains content that is structured into

◊ (finite) sets of content chunks as well as

◊ finite sets of finite sets of content chunks and so on.

• This way we get nested sets of content chunks forming
content hierarchies.

• Typically content chunks are informal statements of
assertions about the system under development (or more
generally, its development process etc.)

Manfred Broy 21MOD SumScho 2012

Illustrating Examples: Content Chunks

• System level requirements (functional requirements)

“the car must not increase its speed without user’s control”

• System level functional specification

“the function acc (adaptive cruise control) accelerates the car up to
the speed selected by the user, provided no obstacles are recognized
in front”

• Architecture specification

“the radar signal based sensor measures the distance to the car in
front and sends it to the acc monitor every 100 ms”

Manfred Broy 22MOD SumScho 2012

From content chunks to assertions

• To go from content chunks such as

“the car must not increase its speed without user’s control”

“the function acc (adaptive cruise control) accelerates the car up to
the speed selected by the user, provided no obstacles are recognized
in front”

needs modeling and formalization.

This involves the following steps

• Formalizing the elements of the universe – elicitation of
the problem domain

◊ Selecting the attributes

◊ Defining basic propositions (called the problem domain theory)

(speed ≤ 500)

• Expressing the informal statement by an assertion

Manfred Broy 23MOD SumScho 2012

Observation about the step of formalization

• The problem domain model has to be chosen in a way,
that the informal statement can be captured

◊ “Expressiveness”

◊ This may require sophisticated models (talking about time, space,
interaction, reaction, intension, …)

• There might be several ways to formalize an informal
statement

◊ Eliminating linguistic ambiguity

• Usually it is not a good idea that all content chunks are
formalized

Manfred Broy 24MOD SumScho 2012

Relating Assertions

Given two assertions P and Q;
what does logical dependency mean?

Manfred Broy 25MOD SumScho 2012

Relating Assertions to Assertions - Implication

• Two assertions

P, Q

are in an implication relation if

(P  Q)

or vice versa

(Q  P)

• Related relations are

(Q  P)

or

(P  Q)

Manfred Broy 26MOD SumScho 2012

Negating the independence conditions

Condition	 Negation	 Result	 Result	 Result	

$(PÙQ)	 Ø$(PÙQ)	 "Ø(PÙQ)	 "(ØPÚØQ)	 "(PÞØQ)	

$(ØPÙQ)	 Ø$(ØPÙQ)	 "Ø(ØPÙQ)	 "(PÚØQ)	 "(QÞP)	

$(PÙØQ)	 Ø$(PÙØQ)	 "Ø(PÙØQ)	 "(ØPÚQ)	 "(PÞQ)	

$(ØPÙØQ)	 Ø$(ØPÙØQ)	 "Ø(ØPÙØQ)	 "(PÚQ)	 "(ØPÞQ)	

	

D.H. Sanford: Independent
Predicates. American Philosophical
Quarterly 18:2, 1981, 171-174

Manfred Broy 27MOD SumScho 2012

Relating Assertions – Logical Independency

If every of the following four relations

(P  Q)

(P  Q)

(P  Q)

(P  Q)

holds then we call assertions P and Q logically independent.

Manfred Broy 28MOD SumScho 2012

Example: Independence

• Consider the following assertions

P: situation = city

Q: speed ≤ 50

• Whether these assertion are independent depends on the
problem domain theory

◊ If we assume (as part of the problem domain theory)

(situation = city  speed ≤ 50)

P and Q are not independent

◊ If we assume no properties as part of the problem domain theory)
P and Q are independent

Manfred Broy 29MOD SumScho 2012

The Cases of Dependence

Tab. Logical Consequences of Negations of the Conditions of Logical Independence

$pÙq $pÙØq $ØpÙq $ØpÙØq Implies consequence

True True True True True independence

True True True False " d: p(d) Ú q(d) unavoidance

True True False True " d: p(d) Ü q(d) implication

True True False False " d: q(d) implication, unavoidance

True False True True " d: p(d) Þ q(d) implication

True False True False " d: p(d) implication, unavoidance

True False False True " d: p(d) Û q(d) equivalence

True False False False " d: p(d) Ù q(d) p and q tautologies

False True True True " d: Øp(d) Ú Øq(d) mutual exclusion

False True True False " d: p(d) Û Øq(d) antivalence

False True False True " d: Øq(d) implication, mutual exclusion

False True False False " d: Øp(d) Ù q(d) implication, mutual exclusion, unavoidance

False False True True " d: Øp(d) implication, mutual exclusion

False False True False " d: p(d) Ù Øq(d) implication,

False False False True " d: Øp(d) Ù Øq(d) Øp and Øq tautologies

False False False False False inconsistency

Manfred Broy 30MOD SumScho 2012

The Lattice of Dependence

True

p Ú q p Þ q q Ü p Øp Ú Øq

p Û Øq q p Øp Øq p Û q

p Ù q p Ù Øq Øp Ùq Øp Ù Øq

False

	

Manfred Broy 31MOD SumScho 2012

Inconsistency

• Assertions P and Q are called inconsistent if

(PQ)

• If assertions P and Q are inconsistent, then both
propositions

(P  Q)

(Q  P)

hold, i.e. they are logically dependent.

Manfred Broy 32MOD SumScho 2012

Logical Overlap

• Two assertions P and Q are called logically overlapping iff

(PQ)

which is equivalent to the statement,

(PQ)

• Then there is a non-trivial property R

◊ (nontrivial means that R holds)

◊ that is implied both by assertion P and by assertion Q; i.e.

(P  R) and (Q  R)

• We choose the strongest assertion R

◊ that is implied both by assertion P and by assertion Q as follows:

R = PQ

• Property R is not trivially true (i.e. R) iff assertions P
and Q are overlapping.

Manfred Broy 33MOD SumScho 2012

Logical Overlap

• Not overlapping assertions are logically not independent,
since

(PQ)

which transforms to

(PQ)

and to

(PQ)

(QP)

• In other terms, independent assertions are always
overlapping.

Manfred Broy 34MOD SumScho 2012

Example: overlapping assertions

• The assertions:

P: speed ≤ 100

Q: speed ≥ 50

are not overlapping:

(speed ≤ 100  speed ≥ 50)

• The assertions:

P: speed ≥ 100

Q: speed ≤ 50

are overlapping:

(speed ≥ 100  speed ≤ 50)

(speed ≤ 100  speed ≥ 50)

Manfred Broy 35MOD SumScho 2012

Negating the independence conditions

Condition	 Negation	 Result	 Result	 Result	

$(PÙQ)	 Ø$(PÙQ)	 "Ø(PÙQ)	 "(ØPÚØQ)	 "(PÞØQ)	

$(ØPÙQ)	 Ø$(ØPÙQ)	 "Ø(ØPÙQ)	 "(PÚØQ)	 "(QÞP)	

$(PÙØQ)	 Ø$(PÙØQ)	 "Ø(PÙØQ)	 "(ØPÚQ)	 "(PÞQ)	

$(ØPÙØQ)	 Ø$(ØPÙØQ)	 "Ø(ØPÙØQ)	 "(PÚQ)	 "(ØPÞQ)	

	

D.H. Sanford: Independent
Predicates. American Philosophical
Quarterly 18:2, 1981, 171-174

Manfred Broy 36MOD SumScho 2012

System Properties at Different Levels of Abstractions:
Relating Views

Manfred Broy 37MOD SumScho 2012

Example: Relating Levels of Abstraction

…

crash Û crash_sensor

air_bag Û activate_air_bag

…

Translator
…

crash Þ air_bag

…

Logical_level

…

crash_sensor Þ
 activate_air_bag

…

Technical_level

Manfred Broy 38MOD SumScho 2012

Example: Relating Levels of Abstraction

…

crash Û crash_sensor

air_bag Û activate_air_bag

…

Translator
…

crash Þ air_bag

…

Logical_level

…

crash_sensor Þ
 activate_air_bag

…

Technical_level

Manfred Broy 39MOD SumScho 2012

Translators between Levels of Abstractions

• A specification given by a set S1  LA(1) of assertions
over some attribute signature 1

is translated into

• a specification S2  LA(2) over some attribute signature
2

◊ where signatures 1 and 2 only partially overlap or are disjoint

• by a set T of assertions formulated over signatures 1 and
2.

Manfred Broy 40MOD SumScho 2012

Translators between Levels of Abstractions

For a translation we require that for every assertion

a1  LA(1)

over signature 1 there exists an assertion

a2  LA(2)

over 2 such that the following formula is valid:

( T)  (a1  a2)

• Then the set T is called a translator from signature 1 to
signature 2.

• A set S1 of assertions is called a refinement of a set S2 of
assertions according to translator T if

( T)  ( S1)   S2

Manfred Broy 41MOD SumScho 2012

Translators between Levels of Abstractions

• If T is free of contradictions T is called consistent
translator.

• If for every assertion a1  LA(1) and every set S1 of
assertions formulated over signature 1 and for every
assertion a2  LA(2) and every set S2 of assertions
formulated over signature 2

[( T)  ( S1)  a1]  [( S1)  a1]

[( T)  ( S2)  a2]  [( S2)  a2]

T is called unbiased translator between signatures 1 and
2.

Manfred Broy 42MOD SumScho 2012

Why translators are useful?

• Translators relate logical assertions to technical/physical
assertions

• They force to make explicit assumptions behind
physical/technical designs

◊ As part of specifications

◊ To validate them – to discover invalid assumptions

Manfred Broy 43MOD SumScho 2012

Logical Basis: Specifying Systems by Assertions

Goal:
Description of views of systems as
captured by artifacts by sets of assertions

Manfred Broy 44MOD SumScho 2012

Here’s
the

problem
world

An industrial press system

Here’s
the

machine

a

Press
Controller

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensors
b

c

d

e

f

Operatorh

g

i

Actuators

A slide due to Michael Jackson

What is
a system?

Manfred Broy 45MOD SumScho 2012

Here’s
the

problem
world

An industrial press system

Here’s
the

machine

a

Press
Controller

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensors
b

c

d

e

f

Operatorh

g

i

Actuators

A slide due to Michael Jackson

Manfred Broy 46MOD SumScho 2012

Here’s
the

problem
world

An industrial press system

Here’s
the

machine

a

Press Controller
Architecture

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensorsb

c

d

e

f

Operatorh

g

i

Actuators

Extending a slide due to Michael Jackson

B
U
S

Software

Software

Software

Software

Here’s
the user
interfac

e

Here’s the
machine’s
interface

Manfred Broy 47MOD SumScho 2012

System and its context

Manfred Broy 48MOD SumScho 2012

Basic System Notion: What is a discrete system (model)

A system has

• a system boundary that determines

◊ what is part of the systems and

◊ what lies outside (called its context)

• an interface (determined by the system boundary), which
determines,

◊ what ways of interaction (actions) between the system und its context are
possible (static or syntactic interface)

◊ which behavior the system shows from view of the context (interface
behavior, dynamic interface, interaction view)

• a structure and distribution with an internal structure, given

◊ by its structuring in sub-systems (sub-system architecture)

◊ by its states und state transitions (state view, state machines)

• quality profile

• the views use a data model

• the views may be documented by adequate models

Manfred Broy 49MOD SumScho 2012

Interfaces

Manfred Broy 50MOD SumScho 2012

Systems: the model

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface (I u O)

data stream of type T

STREAM[T] = {IN\{0} ® T*}

valuation of channel set C

C = {C ® STREAM[T]}

interface behavior for syn. interface (I u O)

[I u O] = { I® Ã(O)}

interface specification

p: IÈO ® IB

represented as interface assertion S - logical formulae with

channel names as attributes of type stream

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

channel name channel type

Manfred Broy 51MOD SumScho 2012

System Specification by Interface Assertions

Interface Assertion

• Given a syntactic interface (IO) with

◊ a set I of typed input channels and

◊ a set O of typed output channels,

The channels form attributes in assertions.

• an interface assertion is a logical formula with the
channel identifiers in I and O as free logical variables
denoting streams of the respective types.

Manfred Broy 52MOD SumScho 2012

Example: Component interface specification

TMC

x ~ y

x:T y:T

Input channel

Output channel

Interface assertion

Spec name

Manfred Broy 53MOD SumScho 2012

Example: Component interface specification – Airbag Controller

An air bag controller

AB_Cont

 in x: T

 out y: T

 x >200> y

x >200> y º (" t Î Time:

 crash_sig Î x(t) Û act_airbag Î y(t+200))

AB_Cont

x >200> y

x:{crash_sig} y:{act_airbag}

Manfred Broy 54MOD SumScho 2012

Architectures

Can we give purely logical
specifications of architecture?

Manfred Broy 55MOD SumScho 2012

Specifying Architectures

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

Syntactic Architecture

Manfred Broy 56MOD SumScho 2012

Composition and Decomposition of Systems

F1 Î [I1� O1]

F2 Î [I2� O2]

C1 = O1 Ç I2

C2 = O2 Ç I1

I = I1\C2 È I2\C1

O = O1\C1 È O2\C2

F1ÄF2 Î [I � O],

(F1ÄF2).x = {z|O: x = z|I Ù z|O1 Î F1(z|I1) Ù z|O2 Î F2(z|I2)}

I2\C1

O2\C2C1

C2O1\C1

I1\C2 F1 F2

Manfred Broy 57MOD SumScho 2012

Interface specification composition rule

Manfred Broy 58MOD SumScho 2012

Specifying Architectures

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

Syntactic Architecture

Manfred Broy 59MOD SumScho 2012

Specifying Architectures

Set of Composable syntactic Interfaces

A set of component names K with a finite set of interfaces

(Ik� Ok) for each identifier k Î K is called composable, if the

following propositions hold:

· sets of input channels Ik, k Î K, are pairwise disjoint,

· sets of output channels Ok, k Î K, are pairwise disjoint,

the channels in {c Î Ik: k Î K } Ç {c Î Ok: k Î K } have

consistent channel types in {c Î Ik: k Î K } and

{c Î Ok: k Î K }.

Manfred Broy 60MOD SumScho 2012

Specifying Architectures

Syntactic Architecture

A syntactic architecture A = (K, x) with interface (IA� OA) is given by a set K

of component names with composable syntactic interfaces x(k) = (Ik� Ok)

for k Î K.

IA = {c Î Ik: k Î K }\{c Î Ok: k Î K } set of input channels,

DA = {c Î Ok: k Î K } set of generated channels,

OA = DA \ {c Î Ik: k Î K } set of output channels,

ZA = DA\OA set of internal channels

CA = {c Î Ik: k Î K } È {c Î Ok: k Î K set of all channels

By (IA� DA) we denote the syntactic internal interface and by (IA� OA) we

denote the syntactic external interface of the architecture.

Manfred Broy 61MOD SumScho 2012

Interpreted and Specified Architecture

Definition. Interpreted Architecture

An interpreted architecture (K, y) for syntactic architecture (K, x)

associates an interface behavior y(k) Î [Ik� Ok] , where

x(k) = (Ik� Ok), with every component k Î K.

Definition. Specified Architecture

A specified architecture (K, z) for syntactic architecture (K, x)

associates an interface assertion z(k) with every syntactic interface
 x(k) = (Ik� Ok) and every component k Î K.

Manfred Broy 62MOD SumScho 2012

Interface Behavior of Interpreted Architectures: Glass Box View

For an interpreted architecture A

the glass box interface behavior [´] A Î [IA� DA] is given by (let

y(k) = Fk):

([´] A)(x) =

{ y Î A: $ z Î A: x = z|IA Ù y = z|DA Ù " k Î K: z|Ok Î Fk(z|Ik) }

where the operator | denotes the usual restriction operator.

D

C

Manfred Broy 63MOD SumScho 2012

Interface Behavior of Interpreted Architectures: black box view

In a black box view Ä A Î [IA� OA] we hide internal channels

Ä A =

{y Î O A: $ z Î

C A : x = z|IA Ù y = z|OA Ù " k Î K: z|Ok Î Fk(z|Ik) }

Ä A describes the interface behavior of the architecture.

Manfred Broy 64MOD SumScho 2012

Specifying Architectures by Assertions

Given composable systems k  K with specifying interface
assertions Ck the specification of the architecture reads

 {Ck: k  K}

and the interface assertion of the composed is given by
hiding the internal channels in set Z

 Z:  {Ck: k  K}

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

Syntactic Architecture

open (glass box)view

cosed (black box) view

Manfred Broy 65MOD SumScho 2012

Where are we?

• Representing artifacts by logical concepts - assertions

• Relating assertions by logical concepts

◊ Dependency, Overlap, Inconsistency

◊ Translators for assertions at different levels of abstraction

• Representing systems by assertions

◊ What is a system?

◊ How to define interfaces?

◊ What is an architecture?

◊ How to compose sub-systems by assertions in a modular way?

Manfred Broy 66MOD SumScho 2012

Representing Artifacts by Assertions:
Functional Specification – Feature Specification

Manfred Broy 67MOD SumScho 2012

How to structure system functionality?

• Typically systems offer a rich functionality structured into
functional features

• A functional feature can be represented by some interface
behavior [IuO]

• Interface behavior of functional features can be
composed the same way as sub-systems are composed

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 68MOD SumScho 2012

What is a feature …

• Is a feature just a name … ?

◊ If yes – for what?

◊ What is the relation of a feature tree to system models?

• What are relation between features?

◊ Feature interactions?

◊ Requires?

◊ Excludes?

• Is there a way to model features?

◊ How can we find and identify features of a system?

◊ What is the semantic interpretation of a feature tree?

• Is there a way to interpret relations between features
such as feature interactions?

Manfred Broy 69MOD SumScho 2012

Functional (Behavioral) Features

We concentrate on functional (behavioral) features!

◊ These are at the level of system level interface behavior!

• A (functional) feature is a sub-function of a multi-
functional system

◊ that serves a certain purpose

Manfred Broy 70MOD SumScho 2012

Modeling functional (behavioral) features

• We give a interpretation of the notion of a (functional)
feature in terms of the system interface model F  [IuO]

• The functionality of a system is modeled by its interface
behavior

• A (functional) feature is modeled by the

◊ projection applied to F to the sub-interface (I’O’) resulting in a
sub-interface behavior F’  [I’O’]

◊ absence of feature interactions is modeled by faithful projections

◊ feature interactions are modeled by modes

Manfred Broy 71MOD SumScho 2012

Feature Specification – Constructive Approach

Manfred Broy 72MOD SumScho 2012

Combining Functions without Interference

Given two functions F1 and F2 in isolation

We want to combine them into a function F1  F2

Manfred Broy 73MOD SumScho 2012

Combining Functions without Interference

Their isolated combination

Manfred Broy 74MOD SumScho 2012

Combining Functions with Feature Interaction

If services F1 and F2 have feature interaction we get:

We explain the functional combination F1  F2 as a

refinement step

Manfred Broy 75MOD SumScho 2012

The steps of function combination

Given the isolated function F1

We construct a refinement F’1

And combine F’1 with a refinement F’2 of F2

Manfred Broy 76MOD SumScho 2012

Feature Specification – Analytic Approach

Manfred Broy 77MOD SumScho 2012

Functional view: functional decomposition

• The system interface behaviour F
as specified by the system requirements
specification is structured

◊ into a set H of sub-interfaces for sub-functions F1, ... ,
Fh

◊ for which a set M of mode channels is introduced

◊ such that the functions can be specified independently
nevertheless capture their feature interactions

◊ each Fi sub-function is described by

• a syntactic interface (including mode channels) and

• an interface assertion Bi for each function

Manfred Broy 78MOD SumScho 2012

Syntactic sub-interfaces

A typed channel set C’ is called a sub-type of a typed channel set C if

• C’ is a subset of C

• The message types of the channels in C’ are
subsets of the message sets of these channels in C

We write then

C’ subtype C

Then we denote for the channel history x Î C by

x|C’ Î !C

the restriction of x to the channels and messages in C’

Manfred Broy 79MOD SumScho 2012

Sub-types between interfaces

For syntactic interfaces (I u O) and (I’ u O’) where

I’ subtype I and O’ subtype O

we call (I’� O’) a sub-type of (I u O) and write:

 (I’ u O’) subtype (I u O)

Manfred Broy 80MOD SumScho 2012

From overall syntactic system interfaces …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 81MOD SumScho 2012

to …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 82MOD SumScho 2012

sub-interfaces

F: Systemx1 : T1

x4 : T4

x2 : T2

y2 : T’2

y3 : T’3

Manfred Broy 83MOD SumScho 2012

Projection

Given:

 (I’ u O’) subtype (I u O)

define for a behavior function F Î [I� O] its projection

F†(I’� O’) Î [I’� O’]

to the syntactic interface (I’� O’) by (for all x’ Î I ’):

F†(I’� O’)(x’) = {y|O’: $ x Î I : x’ = x|I’ Ù y Î F(x)}

The projection is called faithful, if for all x Î dom(F)

F(x)|O’ = (F†(I’� O’))(x|I’)

Manfred Broy 84MOD SumScho 2012

Example: Component interface specification – Airbag Controller

An air bag controller

AB_Cont

 in x: T

 out y: T

 x >200> y

x >200> y º (" t Î Time:

 crash_sig Î x(t) Û act_airbag Î y(t+200))

AB_Cont

x >200> y

x:{crash_sig} y:{act_airbag}

Manfred Broy 85MOD SumScho 2012

Example: Component interface specification – Airbag Controller

An air bag controller

AB_Cont

 in x: T, m: {on, off}

 out y: T

 x >200> y

x >200> y º (" t Î Time:

(ON(m, t+199) Ù crash_sig Î x(t)) Û act_airbag Î y(t+200)

AB_Cont

x >200> y

x:{crash_sig} y:{act_airbag}

m:{on, off}

ON(m, t) = if t = 0 then false elif on  m(t) then true
elif off  m(t) then false else ON(m, t-1) fi

Manfred Broy 86MOD SumScho 2012

Specifying Architectures by Assertions

Given composable feature interface specifications h  H
with specifying interface assertions Bh the assertion of the
functional specification reads

 {Bh: h  H}

and the interface assertion of the composed is given by
hiding the mode channels in M

 M:  {Bh: k  H}

Manfred Broy 87MOD SumScho 2012

An interpreted feature tree

 F1, ..., n

 F1, 2 ... Fk, k+1 ... Fn-1, n

 F1 F2 ... Fk Fk+1 ... Fn-1 Fn

Manfred Broy 88MOD SumScho 2012

Artifacts: Structure and Content

Manfred Broy 89MOD SumScho 2012

Artifacts: Structure and Content

• An artifact is a (perhaps virtual) document that

◊ has a structure

◊ provides some content

• This indicates that an artifact presents content in some
structured way

• The content has

◊ a syntactic form

◊ a semantics (obtained by the interpretation of the syntactic form)

• Content can be represented

◊ informally (using natural language, diagrams etc.)

◊ formally (using formulas – in our case assertions)

• We call pieces of contents “content chunks”

Manfred Broy 90MOD SumScho 2012

Formally: Named Content Chunks

• An elementary named content chunk is a pair (id, ct)
where

◊ id is a unique identifier (which may be typed) and

◊ ct is an elementary content chunk

• A composed named content chunk is a set of

◊ elementary content chunks, or

◊ composed named content chunks

Manfred Broy 91MOD SumScho 2012

Hierarchies of named content chunks

• A composed named content chunk can represent a
hierarchy of named content chunks:

(Air_Bag: Spec,

{(Air_Bag_Safety: Req, {(ABReq1, “if crash then …”),

…},

(Air_Bag_Reliability: Req: { … },

…

}

)

 Air_Bag: Spec

 Air_Bag_Safety: Req Air_Bag_Reliability: Req ...

 (ABReq1, “if crash then …”) ...

Manfred Broy 92MOD SumScho 2012

Formally: Artifacts

• An artifact is a hierarchy of named content chunks

Manfred Broy 93MOD SumScho 2012

Artifacts and their Named Content Chunks

• Given an artifact E = (id, ct) its set NCoCh(E) of named
content chunks is:

NCoCh((id, ct)) = {(id, ct)}

if ct is an elementary content chunk

NCoCh((id, ct)) = {(id, ct)}  ({NCoCh(t): t  ct})

if ct is a set of named content chunks

• NCoCh(E) denotes the set of named content chunks –
that are unique since the identifiers are unique

◊ allows forming finite hierarchies of named content chunks by
nested sets of properties.

◊ By construction, each content chunk in the hierarchy has a name
and which each name content is associated.

Manfred Broy 94MOD SumScho 2012

Artifacts and their Content Chunks

• Given artifact E = (id, ct) we define its set
Co(NCoCh(E))

of content chunks as follows:

Co({(id, ct)}) = {ct}

if ct is an elementary content chunk

Co({(id, ct)}) = {Co(NCoCh(t)): t  ct})

if ct is a set of named content chunks

Co(S1S2) = Co(S1)  Co(S2)

if S1 and S2 are nonempty sets

• If the content chunks are assertions, then the meaning of
the artifacts is given by

 Co(CoCh(E))

Manfred Broy 95MOD SumScho 2012

Artifacts as named hierarchies of content

With these concepts

• An artifact (id, ct) is structured into a hierarchy of named
content chunks

• NCoCh((id, ct)) yields the set of all named content chunks

• Co(NCoCh((id, ct))) yields the set of all elementary
(unnamed) contents of artifact (id, ct)

 Air_Bag: Spec

 Air_Bag_Safety: Req Air_Bag_Reliability: Req ...

 (ABReq1, “if crash then …”) ...

Manfred Broy 96MOD SumScho 2012

Traceability in Software and System Development

Manfred Broy 97MOD SumScho 2012

Linking, Tracing, and Relating Artifacts

• A (bilateral) link t defines a directed relation between two
named content chunks

e and e’

of artifacts E and E’.

(e, e’)  NCoCh(E)  NCoCh(E’)

◊ e is called the source of t and

◊ e’ is called the target of t

• We write

src(t) = e and trg(t) = e’

Manfred Broy 98MOD SumScho 2012

Linking, Tracing: Relating Artifacts and their Content Chunks

• A trace is a nonempty finite sequence of links

t0, t1, t2, …, tn
where the source of ti+1 is the target of ti:

trg(ti) = src(ti+1) for i = 0, 1, …, n-1

We distinguish between links and traces that

• relate the content chunks of one artifact, called intra-
artifact links, and links that

• relate the content chunks e of one artifact E to those of a
different artifact E’, called inter-artifact links.

Manfred Broy 99MOD SumScho 2012

Illustration: Tracing

 Requirements Specification Architecture Implementation

intra-artifact link inter-artifact link

trace

Manfred Broy 100MOD SumScho 2012

Illustration: Forward Tracing

 Requirements Specification Architecture Implementation

Manfred Broy 101MOD SumScho 2012

Illustration: Backward Tracing

 Requirements Specification Architecture Implementation

Manfred Broy 102MOD SumScho 2012

Meaning of Links and Traces

A link relates two syntactic named content chunks

• A link has a meaning that usually is related to the
meaning of the content chunks it relates.

• A link states a proposition about the relationship between
its source and its target.

• A link can be valid or invalid.

◊ It is called valid, if the proposition associated with the link is true.

◊ Otherwise it is called invalid.

Manfred Broy 103MOD SumScho 2012

Syntax and Meaning of Links

• Syntactically a link is

◊ a relationship between named content chunks of artifacts.

• Semantically a link expresses that

◊ there is a particular property valid for the involved content chunks.

Example: link t with

trg(t) = “Product_Manager: Stakeholder”

src(t) = “High_Usability: Quality_Attribute”.

• Link is to express that the stakeholder Product_Manager
is the source of the quality requirement High_Usability.

• In other terms, the link has the meaning

◊ (Product_Manager: Stakeholder, High_Usability: Quality_Attribute)
 Source_of_Requirement

◊ where Source_of_Requirement is a relation between stakeholders
and requirements.

Manfred Broy 104MOD SumScho 2012

Formalizing Links and Tracing

We distinguish the following concepts of links

• supplemental links: link t relating a and z documents
relationships between content chunks a and z providing
additional information not explicitly contained in artifacts
Ek and Ek’;

◊ Example: link between a stakeholder a and a requirement z that
originates from that stakeholder.

• derived links: link t relating a and z documents
relationships between chunks a and z that can be derived
from its logical meaning and justified logically (or even
proved) from the assertions in artifacts Ek and Ek’;

◊ Example: specification of a functional property by assertion a and
its implementation or refinement by assertion z such that z  a.

Manfred Broy 105MOD SumScho 2012

Example: supplemental Link

R1: …

…

Rk: High usability

…

List of requirements
…

Product manager

Architect

…

List of stakeholders

Manfred Broy 106MOD SumScho 2012

Example: derived Link

S1: …

…

Sj: Sensor AoG yields

true if and only if

airplane is on the

ground

Sj+1: AoG  Thrust

reversal cannot be

activated

…

Specification
R1: …

…

Rk: Thrust reversal can

only be activated, if

airplane is on the

ground

…

Requirements

Manfred Broy 107MOD SumScho 2012

Multilateral Links

• A multilateral link t is a directed relation between two
named sets of content chunks

e and e’

of artifacts E and E’:

(e, e’)  (NCoCh(Ek))  (NCoCh(Ek’))

◊ e  NCoCh(Ek) is called the source of t and

◊ e’  NCoCh(Ek) is called the target of t

• We write

src(t) = e and trg(t) = e’

Manfred Broy 108MOD SumScho 2012

Illustration: Multilateral Tracing

 Requirements Specification Architecture Implementation

Manfred Broy 109MOD SumScho 2012

Content of Multilateral Links

• Given multilateral link t relating between content chunks

e and e’

of artifacts E and E’:

(e, e’)  (NCoCh(Ek))  (NCoCh(Ek’))

in case the contents Co(e) and Co(e‘) are assertions

the link relates two sets of of assertions.

Manfred Broy 110MOD SumScho 2012

Representing Artifacts by Logic: System Requirements

Manfred Broy 111MOD SumScho 2012

System level functional requirements

• The system interface behaviour F is specified by the
system requirements specification

A = {Ai: 1 ≤ i ≤ n}

where the Ai are interface assertions
Functional RequirementSafety Priority Component Function

A1 ... Yes high

A2 ... No medium

An ... no low

Manfred Broy 112MOD SumScho 2012

Representing Artifacts by Logic: Functional Specification

Manfred Broy 113MOD SumScho 2012

Function / Feature Hierarchy

Manfred Broy 114MOD SumScho 2012

Functional view: functional decomposition

• The system interface behaviour F
as specified by the system requirements
specification A = {Ai: 1 ≤ i ≤ n}
is structured

◊ into a set of sub-interfaces for sub-functions F1, ... , Fk

◊ that are specified independently by introducing a set
M of mode channels to capture feature interactions

◊ each Fi sub-function is described by

• a syntactic interface and

• an interface assertion Bi such that

 {Bi: 1 ≤ i ≤ k}  A

Manfred Broy 115MOD SumScho 2012

Representing Artifacts by Logic: Architecture

Manfred Broy 116MOD SumScho 2012

Architecture

• Composition C1C2C3

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3
x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

x1 : T1

y6: T’6

x2 : T2

x6 : T6

x8 : T8

y8 : T’8C1

x3 : T3 y3 : T’3

x8 : T8

y8 : T’8 C2

y7 : T’7 x7 : T7

C3

y6: T’6

x4 : T4

x6 : T6

y4 : T’4

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

F:
 Z:  {Ck: k  K}

Manfred Broy 117MOD SumScho 2012

Specifying Architectures by Assertions

Given composable systems k  K with specifying interface
assertions Ck the specification of the architecture reads

 {Ck: k  K}

and the interface assertion of the composed is given by
hiding the internal channels in set Z

 Z:  {Ck: k  K}

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

Syntactic Architecture

open (glass box)view

closed (black box) view

Manfred Broy 118MOD SumScho 2012

Three Artifacts

Manfred Broy 119MOD SumScho 2012

Three levels of Specification

• Requirements - system level

◊ List of requirements - functional system property

◊ Example: “The activation of safety relevant functions by the pilot is always
double checked for plausibility by the system .“

• Functional specification - system level

◊ decomposition of system functionality in hierarchy of (sub-)functions

◊ Specification of (sub-)functions

◊ Specification of dependencies (feature interactions) between (sub-)
functions based on a mode concept

◊ Example: “Thrust reversal may only be activated, if the plane is on the
ground.“

• Architecture specification - component level

◊ decomposition a systems in sub-systems (component)

◊ relationship to data flow diagram

◊ interface specification of component

◊ Example: “The weight sensor indicates that the plane is on the ground.“

Manfred Broy 120MOD SumScho 2012

Three levels of system description in logic

• system level requirements

A =  {Ai: 1 ≤ i ≤ r}

• functional specification at system level - functionality

B =  {Bi: 1 ≤ i ≤ n}

• architecture specification

C =  {Ck: 1 ≤ k ≤ m}

• Correctness

◊ functional specification correct w.r.t to requirements:

B  A

◊ architecture correct w.r.t to functional spec (let M be the set of mode
channels):

C   M: B

Manfred Broy 121MOD SumScho 2012

Relational view: Inter-artifact links and traces

Functional RequirementSafety Priority Component Function

A1 ... Yes high

A2 ... No medium

An ... no low

Manfred Broy 122MOD SumScho 2012

Illustration: correctness and refinement

 Requirements Specification Architecture Implementation

every assertion in the
specification has to be
guaranteed by the assertions
of the architecture

Can we find
and identify
them?

  

Manfred Broy 123MOD SumScho 2012

Illustration: Multilateral Tracing as refinement

 Requirements Specification Architecture Implementation

Manfred Broy 124MOD SumScho 2012

Guarantors and Guarantor Sets

• Let P be an assertion and R be a set of assertions.

• A subset R’  R is called guarantor set for assertion P in
set R if

(( R’)  P)

◊ In this case the assertions in set R’ guarantee logically assertion P.

• A guarantor set R’ for assertion P in R is called minimal, if
every strict subset of set R’ is not a guarantor set for
assertion P.

• A minimal guarantor set R’  R is called unique in set R if
there do not exist different minimal guarantor sets in R.

Manfred Broy 125MOD SumScho 2012

Guarantors and Guarantor Sets

• A assertion Q is called weak guarantor for assertion P  R
if it occurs in some minimal guarantor set for assertion P
in R.

• A assertion Q is called strong guarantor for P in R if
assertion Q occurs in every guarantor set of assertion P in
R.

• Note that there is some relationship between guarantors
and the so-called Primimplikanten a la Quine

Manfred Broy 126MOD SumScho 2012

Relationship: req spec to function spec - tracing

system level reqs

A1 A2 A3 A4 A5 A6 A7 A8 A9 . . . Ak

sub-function reqs

B1

B2

B3

...

Bn

Red: Bi is strong guarantor of Aj

Yellow: Bi is weak guarantor of Aj

Green: Bi is not a weak guarantor of Aj

Manfred Broy 127MOD SumScho 2012

Relationship: architecture to requirements

system level reqs

A1 A2 A3 A4 A5 A6 A7 A8 A9 . . . Ak

sub-system reqs

C1

C2

C3

...

Cn

Red: Ci is strong guarantor of Aj

Yellow: Ci is weak guarantor of Aj

Green: Ci is not a weak guarantor of Aj

Manfred Broy 128MOD SumScho 2012

Tracing at a logical level

Requirements A = A1A2A3 …

Architecture C = C1C2C3 …

Correctness architecture C  A

Tracing requirement k C  A1A2A3…Ak …

Expanding C C1C2C3 …  Ak

Weakening C (C1C’1)(C2C’2)(C3C’3) …

Such that C’1C’2C’3 …  Ak

Conclusion:

If the architecture spec C is correct with respect to a
particular requirement Ak then there exist assertions C’i
contained in the specifications Ci of the sub-systems of the
architectures that guarantee Ak

Manfred Broy 129MOD SumScho 2012

Analysis

• For every requirement Ak its “guarantors” C’i are different,
in general

◊ Conclusion: Syntactic tracing does not work

• For requirement Ak

◊ there are weakest “guarantors” C’I
◊ its weakest “guarantors” C’i are not necessarily unique

◊ many of its “guarantors” C’i are not necessarily trivial (“true”)

• There are many links!

Manfred Broy 130MOD SumScho 2012

Inter-artifact Links: Functional Specification to Requirements

• Relating Functional Specifications to System Level
Requirements

◊ The trace concept as introduced above can be used to relate the
functional specification B to the requirement specification A.

◊ Due to the specific structure of set B in terms of sub-functions this
imposes a specific structure on the set A.

• A requirement Q in A is called dedicated functional
feature k, if there exist only one strong trace to exactly
one feature h with Bh  B.

Manfred Broy 131MOD SumScho 2012

Inter-Artifact Traces: Relating Architecture to Requirements

• Traces relate content chunks of architectural specification
C to the content chunks of system level requirements
specification A.

• A requirement Q in A is called sub-system requirement, if
there exist only one strong trace to exactly one assertion
P in C.

◊ Then the system level requirement does only affect one subsystem
(this is a very special case).

Manfred Broy 132MOD SumScho 2012

Intra-artifact Links: System Level Requirements
Relating Content Chunks of Artifacts by Logic

Manfred Broy 133MOD SumScho 2012

Well-Formedness of Sets of System Assertions

A set R of system requirements by assertions is called

• consistent, if the following proposition holds

( R)

• non-overlapping, if (there is a relationship to case
distinctions)

( R)

• weakly independent, if for every pair of non-empty
subsets R’, R’’  R of disjoint non-empty sets of
assertions with Q =  R’, P =  R’’

(PQ) P and Q are consistent

(PQ) Q does not imply P

(PQ) P does not imply Q

Manfred Broy 134MOD SumScho 2012

Non-overlapping: Sets of assertions forming case distinctions

• We consider a finite set of cases Qi and a finite set of
consequences Pi, 1 ≤ i ≤ n.

• We speak of a complete, disjoint case distinction if both
the following two propositions hold

{Qi: 1 ≤ i ≤ n} completeness

(Qi  Qj) for all i ≠ j - disjointness

• By these conditions following propositions are equivalent

{Qi  Pi: 1 ≤ i ≤ n} disjunctive normal form

{Qi  Pi: 1 ≤ i ≤ n} implicative form

• The second form leads to a set {(Qi  Pi): 1 ≤ i ≤ n} of
assertions that are non-overlapping

Manfred Broy 135MOD SumScho 2012

Consistency

• Consistency for sets R of assertions

R

• Consistency of two assertions P and Q means [PQ]
which is equivalent to

[PQ]

[QP]

which is one of the conditions of logical independence.

• This shows that the fundamental requirement of
consistency guarantees two conditions of logical
independence.

Manfred Broy 136MOD SumScho 2012

Analyzing System Level Requirements: Intra-Artifact Links

There are many papers and even standards on the quality
of requirements. The IEEE standard Std 830-1998 (see
[IEEE 98]) requires the following quality attributes for
system and software requirements:

• completeness

• consistency

• unambiguousness/precision

• correctness (more precisely validity)

• understandability/clarity

• traceability

• changeability

Manfred Broy 137MOD SumScho 2012

Formalization IEEE artifact quality attributes

• Notions from this list such as

◊ completeness

◊ correctness (more precisely validity – the requirement is what the
stakeholder meant)

◊ understandability/clarity

cannot be explicitly addressed in our approach since they
have to be analyzed on a different level.

• They deal with properties of requirements that are not
captured by our logical relations.

Manfred Broy 138MOD SumScho 2012

Formalization IEEE artifact quality attributes

• Clarity and understandability is not a formal notion.

◊ depends on the skills and background of the people that read and
write specifications.

◊ This quality attribute is beyond our approach of formalization.

• Precision can be achieved by formalization.

• However, quality concepts such as

◊ consistency

◊ traceability

◊ changeability (to some extend)

are captured by our approach.

Manfred Broy 139MOD SumScho 2012

Intra-artifact Links: Functional System Specification
Relating Functional Features by Feature Interactions

Manfred Broy 140MOD SumScho 2012

Function Hierarchy

intra-artifact link: feature interaction

Manfred Broy 141MOD SumScho 2012

Intra-artifact links in functional feature specifications

Given (let be I1, O1, I2, O2 pairwise disjoint): F Î [I� O]

 (I1uO1) subtype (I uO) (I2uO2) subtype (I uO)

there is a feature interaction from the feature

F†(I2uO2) Î [I2uO2] to F†(I1uO1) Î [I1uO1]

if
projection F†(I\I2’� O1) is not faithful in F

Manfred Broy 142MOD SumScho 2012

Intra-artifact links in functional feature specifications

• If there is a feature interaction from functional feature k
to feature k‘

◊ There exists a mode channel from feature k to feature k‘

• If there is a mode channel m from feature k to feature k‘
and there is no feature interaction from feature k to
feature k‘ then

◊ m can be eliminated in the specification of feature k‘ and the mode
channel can be dropped

Manfred Broy 143MOD SumScho 2012

Intra-artifact Links: Architecture

Manfred Broy 144MOD SumScho 2012

Analyzing Composition: Intra-Artifact Links and Relations

• Consider two realizable specifications C1 and C2 for
composable systems with syntactic interfaces (I1O1)
and (I2O2) into a system with syntactic interface (IO).

• If specifications C1 and C2 are realizable, then C1C2 is a
specification for the syntactic interface (IO) that is

realizable.

• Realizability implies for C1 and C2:

I1:O1:C1 I2:O2:C2

• By composition we derive the specification

Z:C1C2

where Z is the set of internal channels.

• Note: realizability implies consistency

Manfred Broy 145MOD SumScho 2012

Analyzing Composition: Intra-Artifact Links and Relations

• If O1 ≠  and O2 ≠  then C1 and C2 are logically
independent (if they are not trivial) since

[C1  C2]

[C2  C1]

cannot hold due to the fact that C1 and C2 talk about
disjoint sets of output channels that cannot be constraint
by the other assertion.

Manfred Broy 146MOD SumScho 2012

Intra-Artifact Links for Architecture Specifications

• From the syntactic architecture we conclude which
components are connected by channels.

• Channels yield intra-artifact links for architectures.

Note that strictly speaking, there may be channels used as
input channels in components that do not depend on that
input.

• Then there is a syntactic dependency but not a behavioral
dependency

• However, then the channel can be eliminated in the
interface assertion

Manfred Broy 147MOD SumScho 2012

Logical Independence of Functional System Specifications

• The set B consists of assertions being sub-function
specifications

◊ Each assertion Bk  B specifies the interface behavior of a sub-
function.

• Assume that these specifications are realizable

◊ As long as all interface assertions Bk  B for functional features in
B are consistent, the set B is consistent, too.

• A simple analysis shows that as long as the interface
specifications of the individual functions are not trivial and
realizable, the assertions in set B are pairwise

◊ logically independent

◊ consistent

Manfred Broy 148MOD SumScho 2012

Logical Independence of Functional System Specifications

• Given two interface specifications Bk for syntactic
interfaces (IkOk) and disjoint output sets with k = 1, 2

that are realizable we get consistency

(B1B2)

for free.

• Actually, we should see a functional specification rather
as a set of assertions about sub-functions.

• If interface assertions Q1 and Q2 for different features are
not trivial, i.e. if

Q1 and Q2

then we get weak independence of the assertions, since
they refer to different input channels.

Manfred Broy 149MOD SumScho 2012

Change Management and Changeability: Impact
Analysis for Change Requests

Manfred Broy 150MOD SumScho 2012

Changeability and Impact Analysis

• Typically, in requirements management we have to revise
requirements.

• Requirements are

◊ changed and modified

◊ validated

◊ verified

◊ traced

◊ implemented

• One essential notion is the granularity of requirements.

Manfred Broy 151MOD SumScho 2012

Changeability and Impact Analysis

• For validation, refinement, implementation, tracing, and
verification a well-chosen granularity of assertions is
useful.

◊ If the granularity is too coarse, a further decomposition is needed
to address test cases.

◊ If it is too fine too many tests are needed to cover all
requirements.

• Typically in requirements engineering we deal with lists of
requirements or – more abstractly – with sets R of
requirements.

Manfred Broy 152MOD SumScho 2012

Changeability and Impact Analysis

• Actually, then the ultimate requirement given by the set R
is

 R

◊ So for the ultimate requirement the granularity of the requirements
is not actually relevant.

◊ However, it is relevant for the development activities related to
requirements.

• What happens, if we change the granularity of
requirements and go from set R with assertions

P, Q  R to R’ = (R\{P, Q})  {PQ}?

Obviously then

 R   R’

• Thus consistency and validity is not changed.

Manfred Broy 153MOD SumScho 2012

Concluding Remarks

• Artifacts represented by logic

◊ Logical representation of the content by assertions

• Dependencies based on logic

◊ Logical representation of dependencies

• Formalization of traceability

◊ Intra- and inter-artifact links

• Relating different levels of abstraction

• Engineering questions

◊ How many dependencies are there in systems today

◊ What is the complexity of relations between

• Requirements and functional specification

• Functional specification and architecture

• Requirements and architecture

Next step:
variability

