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verified programming

• in this course, you will experience the joys (and agonies) of 
writing verified code
– you will verify the code you write, not just a model of the code
– the code will be written in C, (still the most popular language for 

writing efficient code)
– verification means the verifier will prove that your code meets 

its specs

• two possible outcomes, both good:
– you find that you like verified programming, and want to do 

more of it (see me if this happens)
– you are disgusted with the primitive state of verified 

programming, and want to improve the tools (see me if this 
happens) 



labs

• verified programming is not a spectator sport
• we will have lab time in the lecture hall every day immediately after 

the discussion period, unless announced otherwise
• we have a local network set up in the lab that you can use to 

download/share software (wait for announcements)
• the labs are optional, and you can come and go as you please; you 

can work on exercises whenever you want…
• … but you are likely to get stuck when getting started, so you will 

save lots of time by working when/where there are people to help 
you

• rule #1: if you are stuck on something for more than 5 minutes, ask 
somebody for help

• if you have a piece of code you’re eager to verify, talk to me



tool

• we will be programming in C, using VCC (Verified Concurrent C)
– today, this requires Windows/Visual Studio to run
– even if you don’t have these, stay for the lab and we will try to get you 

set up
– if you have successfully set up a non-windows box (e.g., with a VM), 

consider offering to share your setup with other

• VCC is not a production-quality tool, but it has been used to 
successfully verify highly concurrent code (100KLOC, mostly from 
products)

• if you don’t know C, you should (especially if you want to build 
tools)

• if you know an imperative programming language (e.g. Java, C#) you 
should be able to pick it up what you need from the lectures (ask 
friends for help if you need it)



why verify software?

• without verification, you can’t write correct 
software

• with verification, you can write correct 
software



question

• hopefully, you learned about binary search in school

• how many of you think you could program a correct 
binary search? (using your favorite programming tools)

• how long would it take you to do it?

• how sure would you be that it was correct?

• how much time would it take you to document it? how 
precise would your documentation be?

• how much work would it be for you to test it 
thoroughly?



cautionary tale: binary search

• algorithm first published in 1946, but first correct version didn’t appear until 
1962

• in 1988, a survey of 20 textbooks on algorithms found that at least 15 of 
them had errors

• Bentley reports giving it as a programming problem to over 100 professional 
programmers from Bell Labs and IBM, with 2 hours to produce a correct 
program. At least 90% of the solutions were wrong. Dijkstra reported similar 
statistics in experiments he performed at many institutions.

• Bentley published a CACM “programming pearl” on binary search and 
proving it correct, expanded to 14 pages in “Programming Pearls” (1986). 

• Joshua Bloch used Bentley’s code as a basis for the binary search 
implementation in the JDK, in 1997.

• in 2006, a bug was found in the JDK code, the same bug that was in Bentley’s 
code, which nobody had noticed for 20 years. The same bug was in the C 
code Bentley published for the second edition of his book in 2000.

• these are not exactly your average programmers



Bloch’s conclusion

“…The general lesson that I take away from this bug is 
humility: It is hard to write even the smallest piece of code 
correctly, and our whole world runs on big, complex pieces of 
code.”

“We programmers need all the help we can get, and we 
should never assume otherwise. Careful design is great. 
Testing is great. Formal methods are great. Code reviews are 
great. Static analysis is great. But none of these things alone 
are sufficient to eliminate bugs: They will always be with us. A 
bug can exist for half a century despite our best efforts to 
exterminate it. We must program carefully, defensively, and 
remain ever vigilant.”



cautionary tale: Chord

• a distributed (ring) hash table algorithm, developed at MIT
• the 4th most cited paper in computer science, according to 

Citeseer; won SIGCOMM “Test of Time” award in 2011.
• from the paper: “Three features that distinguish Chord 

from many other peer-to-peer lookup protocols are its 
simplicity, provable correctness, and provable 
performance.”

• the proofs in the paper (and the protocol itself) are buggy;  
not one of the 7 invariants given in the paper is an invariant 

• this is not an isolated example; many published journal 
concurrent/distributed algorithms are incorrect



cautionary tale: crypto protocols

• in 1995, people finally got around to model-
checking and verifying crypto protocols 
(assuming perfect cryptography)

– these are basically 2-10 line distributed programs

• more than half of the published 
authentication protocols were buggy



some takeaways

• people can’t write correct software

• many eyes looking at code doesn’t guarantee 
correctness

• it’s not good enough to verify algorithms; you 
have to verify code

• deductive verification is not free, but neither 
is testing; a typical software shop spends 
more on trying to eliminate bugs than they 
spend on writing the code



how to reason about programs

• a programming student once approached the 
Talmudic sage Hillel, seeking to learn how to 
reason about programs

• the student was impatient, and told Hillel he 
wanted to learn all there was to know about 
program reasoning while standing on one foot

• Hillel replied, “use invariants; the rest is 
commentary. now go forth and verify some 
code.”



invariants

• we’re going to prove things  about programs by 
constructing a big fact F about the program

• we prove F by proving that it is true initially, and that it 
can never go from being true to being false; we then 
say F is an “invariant”

• F is the conjunction of many separate statements 
about the program; these will be of the form “this is 
true here”:
– “this is true whenever control reaches this location”
– “this is always true for this data structure”

• these annotations will be sprinkled throughout the 
code



example

unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

_(invariant i + j == x + y)

{

i--;

j++;

}

return j;

}



_(requires p)
p holds on entry to the function

(i.e. p is a precondition of the function)

_(ensures p)
p holds on return from the function

(i.e., p is a postcondition of the function)

\result is the value returned from the function

_(invariant p)
p holds whenever control reaches the top of the loop (before 
evaluating the loop test)

in each case, p is written as a C expression (possibly 
using some additional stuff)



modular verification

• the  _(requires) and _(ensures) annotations provide the specification (or 
contract) for the function add

• when reasoning about a call to a function, we will use only its 
specification, not its implementation
– when you call a function, you must prove that its preconditions will be 

satisfied
– on return from the function, you can assume its postconditions
– in a real project, you put the specifications in the header files

• this has several big advantages:
– it hides irrelevant detail from the reasoner (man or machine)
– you can verify the functions separately
– if you change the body of a function without changing its specification, you 

know the change won’t break anything else
– the header can serve as the documentation of the function
– a programmer can program to the specification of a function that hasn’t been 

written yet



example

unsigned add3(unsigned x, unsigned y, unsigned z)

_(requires x + y + z <= UINT_MAX)

_(ensures \result == x + y + z)

{

unsigned i = add(x,y);

return add(i,z);

}

.



linear search

size_t lsearch(int *a, size_t len, int v)

_(requires \thread_local_array(a,len))

_(ensures \forall size_t i; i < \result ==> a[i] != v)

_(ensures \result < len ==> a[\result] == v)

{

for (size_t i = 0; i < len; i++)

_(invariant \forall size_t j; j < i ==> a[j] != v)

{

if (a[i] == v) return i;

}

return len;

}



\thread_local_array(a,len))
a points (at least) len items with type that of *a

these items are all “owned” by this thread

\forall T v; p

\exists T v; p
universal/existential quantification

p ==> q

p <== q

p <==> q
p “only if” / “if” / “iff and only iff” q



side effects

void test() {

int a[10];

_(assume a[3] == 3)

lsearch(a,10,3);

_(assert a[3] == 3)

}

• should this verify? (presumably yes)

• but how do we know that lsearch doesn’t change a[3]?

• rule: a function has to declare (in its spec) anything 
that might change, if the caller might otherwise 
“remember” something about it



homework for next time

• write code for binary search, using your favorite 
method. then specify and verify it; did you find 
any bugs?

• specify, program, and verify the following:
– compute the square root of an int
– find the maximum element of an array
– check if an array is sorted
– determines if two sorted arrays have a common 

element
– a function that sorts an array
– a function that reverses an array



review
_(requires p)

_(ensures p)

_(writes o)

_(assert p)

_(assume p)

_(invariant p)

\result

\forall

\exists

\mutable(o)

\mutable_array(o,len)

\thread_local(o)

\thread_local_array(o,len)



termination

• to prove that a function terminates, you need to prove two things:
– no infinite loops
– no infinite recursion

• you prove absence of an infinite loop by giving a measure that 
decreases on each iteration through the loop

• you prove absence of an infinite recursion by giving a lexicographic 
measure that decreases on each function call
– VCC implicitly adds a highest-order measure of the “rank” of the 

function in the call graph, for functions whose bodies it sees
– in practice, this means that you can just write _(decreases 0) for any 

nonrecursive function
– mututally recursive functions must be declared so in their specs (see 

the manual for details)



termination examples

void test(unsigned x)

_(decreases x)

{

for (unsigned i = 0; i<x; i++)

_(decreases x-i)

{

test(i);

}

}

_(\natural Ackermann(\natural m, \natural n)

_(decreases m, n)

{

if (m == 0) return n + 1;

else if (n == 0) return Ackermann(m - 1, 1);

else return Ackermann(m - 1, Ackermann(m, n - 1));

})



objects and pointers

• a program text defines a fixed set of objects
• each object o == <\addr(o),\typeof(o),\ghost(o)>

– the type of an object determines its fields and their types
– each field is either concrete or ghost
– each concrete field occupies a set of byte addresses in memory

• \state == ObjectsFieldnameValues
• note: the objects are logically disjoint
• a pointer is either an object or a pair <o,f> where f is a field name

– \embedding(<o,f>) == o
– \is_primitive_ptr(<o,f>) == \true;  
– \is_primitive_ptr(o) == \false
– &(o->f) == <o,f>;  *<o,f> in state S == S(o)(f)

• \object is (for the moment) the type of pointers, rather than the 
type of objects 



validity and aliasing

• each object has a ghost \bool field \valid, which determines 
whether it is one of the “current” objects

• two objects overlap iff they have overlapping concrete fields
• VCC forces programs to maintain the invariant that \valid objects 

don’t alias
– you can only make an object o valid if you simultaneously make invalid 

a set of objects whose concrete fields cover the concrete fields of ob

• proof obligations guarantee that all reads and writes are of fields of 
\valid objects

• these conditions allow reads and writes of concrete fields to be 
implemented by reads and writes to shared memory
– maintain the global invariant that concrete fields of \valid objects 

agree with their corresponding bytes in memory

• so these conditions immediately eliminate all “crazy” aliasing in C



closed objects and ownership

• each object has a \bool field \closed
– only valid objects are \closed

• each object has an \object field \owner (which must be an object)
– only threads can own open objects
– only the owner of an object can open or close it

• in the context of a thread, 
\wrapped(o)

means o is a closed object owned by \me

\mutable(o)

means o is open object owned by \me, or o == <o’,f> and \mutable(o’)
\thread_local(o)

means o is transitively owned by \me, or o==<o’,f> and \thread_local(o’)
_(wrap o)

closes o

_(unwrap o)

opens o



object invariants

each object o has an invariant \inv(o)

• \inv(o) holds whenever o->\closed

– wrapping o asserts \inv(o)

– unwrapping o assumes \inv(o)



ghost data

• we make heavy use of ghost data
– ghost variables in functions
– ghost fields in objects
– ghost parameters to functions

• ghost data is used to facilitate verification, but is not 
part of the compiled program

• ghost data can have some additional types
– \natural, \integer, \object, \state
– maps
– records (structs, but pure values without identity)
– inductive data types
– (a few others)



#define ONE  ((\natural) 1)

#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

// abstract value

_(ghost \natural val)

// implementation

unsigned low;

unsigned high;

//coupling invariant

_(invariant val == low + high * RADIX)

} Double;

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && d->val == 0)

{

d->low = 0;

d->high = 0;

_(ghost d->val = 0)

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires d->val + 1 < DBL_MAX)

_(ensures d->val == \old(d->val) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else

d->low++;

_(ghost d->val = d->val + 1)

}

}



_(ghost …)

ghost code or data declaration

\natural

type of natural numbers

\span(d)

union of d and pointers to all d’s primitive fields

\extent(d)

union of \span(d) and the extents of d’s nonprimitive fields

\mutable(d)

d is open and owned by \me

\extent_mutable(d)

\extent(d) is open and owned by \me

\wrapped(d)

d is closed and owned by \me

_(wrap d)

set d->\closed to true

_(unwrap d)

set d->\closed to false

_(unwrapping d1, d2, ) { … }

sugar for _(unwrap d1)  _(unwrap d2) …  _(wrap d2) _(wrap d1)



objects owning objects

• each object has a field \owns (a set of objects)
– when o->\closed, o->\owns gives the objects owned by o

• _(unwrap o) transfers ownership of all objects in o->\owns 
from o->\owner to \me
– this involves a check that they are all \wrapped and writable

• _(wrap o) transfers ownership of all objects in o->\owns 
from \me to o->\owner

• by default, o->\owns is static and is computed from the 
invariant of o

• if a type is marked _(dynamic_owns), o->\owns is 
maintained manually (in ghost code)

• if a type is marked _(volatile_owns), o->\owns can change 
even while the object is closed (subject to o’s invariants)



#define DRADIX (DBL_MAX + ONE)

#define QUAD_MAX \

(DBL_MAX + DBL_MAX * DRADIX)

typedef struct Quad {

// abstract value

_(ghost \natural val)

Double low;

Double high;   

_(invariant \mine(&low) && \mine(&high))

//coupling invariant

_(invariant val ==

low.val + high.val * DRADIX)

} Quad;

void quadNew(Quad *q)

_(requires \extent_mutable(q))

_(writes \extent(q))

_(ensures \wrapped(q) && q->val == 0)

{

dblNew(&q->low);

dblNew(&q->high);

_(ghost q->val = 0)

_(wrap q)

}

void quadDestroy(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(ensures \extent_mutable(q))

{

_(unwrap q)

_(unwrap &q->low)

_(unwrap &q->high)

}

void quadInc(Quad *q)

_(maintains \wrapped(q))

_(writes q)

_(requires q->val + 1 < QUAD_MAX)

_(ensures q->val == \old(q->val) + 1)

{

_(assert \inv(&d->low))

_(unwrapping q) {

if (isDblMax(&q->low)) {

dblInc(&q->high);

dblZero(&q->low);

} else

dblInc(&q->low);

_(ghost q->val = q->val + 1)

}

}



objects are not fields

• a struct or union nested inside another struct or 
union is logically a completely separate object, 
one that just happens to have an arithmetically 
related address

• therefore, the low and high members of a Quad 
are not actually fields of the Quad

• in particular, if the invariants of the Quad type 
had allowed it, low and high could be owned by 
another object, and could change while the Quad 
is closed



admissibility

• the invariant of Quad talks about low.val and high.val…
• …but these are fields of completely separate objects!
• what stops someone from modifying these fields and 

falsifying the invariant?
• answer: the Quad has an invariant that it owns &low and 

&high
• for every type, VCC checks that the invariant of an object o 

of that type cannot be broken (while o is closed) by a legal 
change to the state
– if Quad o is closed and the state changes without changing o, 

then by the invariant of o, o.low is owned by o. Since o is not a 
thread, o.low is closed. A legal update cannot change a 
nonvolatile field of a closed object, so o.low.val doesn’t change.



framing

• on a function call, the caller forgets everything he knew about the state, 
except for the “version” of those objects that \me owns
– the values in the fields of o, and the versions of the objects owned by o,  are a 

(fixed) function of the version of o
– if o is not written, the values of all objects transitively owned by o are also a 

function of the version of o, so they are also unchanged 

• the _(writes) specifications in a function contract are there to tell the 
caller what additional information he has to forget

• therefore,  the _(writes) clauses don’t have to mention any objects that 
were not owned by \me, or fields of objects that were not \mutable, when 
the function is called

• conversely, if you want to remember more about the state, you need to 
get ownership of additional objects whose invariants give the information 
you want to move “into the future” (perhaps by creating them yourself); 
we’ll see a lot of this starting in the next lecture



review

• function contracts

• loop invariants

• data invariants; admissibility

• ownership; sequential domains

• framing

• ghost data and code



size_t bsearch(int *a, size_t len, int v)

{

size_t i = 0, j = len;

while (i < j)

{

size_t k = (i + j)/2;

if (a[k] == v) return k;

if (a[k] < v) i = k+1;

else j = k;

}

return len;

}



size_t bsearch(int *a, size_t len, int v)

_(requires \mutable_array(a,len))

_(requires \forall size_t i,j; i <= j && j <= len ==> a[i] <= a[j])

_(ensures \result == len ==> \forall size_t i; i < len ==> a[i] != v)

_(ensures \result != len ==> \result < len && a[\result] == v)

_(decreases 0)

{

size_t i = 0, j = len;

while (i < j)

_(invariant i <= j && j <= len)

_(invariant \forall size_t k; k < i ==> a[k] < v)

_(invariant \forall size_t k; j <= k && k < len ==> a[k] > v)

{

size_t k = i + (j-i)/2;

if (a[k] == v) return k;

if (a[k] < v) i = k+1;

else j = k;

}

return len;

}



model fields

• the alternative to representing the abstract state with ghost fields is to use 
a function of the concrete state

• these are sometimes called model fields, because they are materialized as 
fields in some systems

• advantages  vs. ghost fields:
– you don’t have to manually update the ghost state
– in a concurrent setting, the model fields automatically change instantaneously 

when the concrete state changes, so other objects that 

• disadvantages:
– sometimes the abstract state is related only relationally to the concrete state
– if the abstract state is a function of the state of other objects, and is subject to 

further invariants, admissibility has to be proved for every possible update to 
the other objects, rather than just the ones actually invoked in code. (this isn’t 
a problem if the concrete state is all owned by the object with the invariants)

– with a ghost field, the verifier can more easily take advantage of parts of the 
abstract value that doesn’t change (since it is reflected syntactically rather 
than semantically)

– it is harder to prove admissibility for invariants that use model fields
– reads clauses don’t take into account model fields



#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

// abstract value

_(ghost \natural val)

// implementation

unsigned low;

unsigned high;

//coupling invariant

_(invariant val == low + high * RADIX)

} Double;

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && d->val == 0)

{

d->low = 0;

d->high = 0;

_(ghost d->val = 0)

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires d->val + 1 < DBL_MAX)

_(ensures d->val == \old(d->val) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else

d->low++;

_(ghost d->val = d->val + 1)

}

}



#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

unsigned low;

unsigned high;

} Double;

_(def \natural dblVal(Double *d) {

return d->low + d->high * RADIX;

})

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && dblVal(d) == 0)

{

d->low = 0;

d->high = 0;

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires dblVal(d) < DBL_MAX)

_(ensures dblVal(d) == 

\old(dblVal(d)) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else d->low++;

}

}



#define DRADIX (DBL_MAX + ONE)

#define QUAD_MAX \

(DBL_MAX + DBL_MAX * DRADIX)

typedef struct Quad {

Double low;

Double high;

_(invariant \mine(&low) && \mine(&high))

} Quad;

_(def \natural qval(Quad *q) {

return dblVal(&q->low)

+ dblVal(&q->high) * DRADIX;

})

void quadNew(Quad *q)

_(requires \extent_mutable(q))

_(writes \extent(q))  

_(ensures \wrapped(q) && qval(q) == 0)

{

dblNew(&q->low);

dblNew(&q->high);

_(wrap q)

}

void quadDestroy(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(ensures \extent_mutable(q))

{

_(unwrap q)

_(unwrap &q->low)

_(unwrap &q->high)

}

void quadInc(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(requires qval(q) + 1 < QUAD_MAX)

_(ensures qval(q) == \old(qval(q)) + 1)

{

_(unwrapping q) {

_(assert \inv(&q->low))

if (isDblMax(&q->low)) {

dblInc(&q->high);

dblZero(&q->low);

} else dblInc(&q->low);

}

}



maps and records

_(typedef \bool UnsSet[unsigned])

_(typedef \bool NatSet[\natural])

_(typedef \bool UnsSetSet[UnsSet])

_(typedef _(record) struct FinNatSetSeq {

NatSet vals[\natural];

\natural len;

} FinNatSeq;)

_(void test() {

\natural squares[\natural];

squares = (\lambda \natural n; n*n);

FinNatSeq s;

s.len = 1000;

s.vals = (\lambda \natural n;

(\lambda \natural m; m < n));

})



typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

_(invariant \forall Val v; mem[v] <==>

\exists size_t j; j < len && data[j] == v)

} Set;

void setNew(Set *s)

_(requires \mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !s->mem[v])

{

s->len = 0;

_(ghost s->mem = \lambda Val v; \false)

_(wrap s)

}     

_(pure) BOOL setMem(Set *s, Val v)

_(requires \wrapped(s))

_(reads s)

_(ensures \result == s->mem[v])

{

for (size_t i = 0; i < s->len; i++)

_(invariant \forall size_t j; j < i

==> s->data[j] != v)

{

if (s->data[i] == v) return TRUE;

}

return FALSE;

}

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

_(ghost s->mem[v] = \true)

}

return TRUE;

}



typedef int Val;

_(typedef \bool valSet[Val])

typedef struct Set {

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

} Set;

_(def valSet setMem(Set *s) {

return \lambda Val v; \exists size_t i;

i < s->len && s->data[i] == v;

})

void setNew(Set *s)

_(requires \mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !setMem(s)[v])

{

s->len = 0;

_(wrap s)

}

_(pure) BOOL setMem(Set *s, Val v)

_(requires \wrapped(s))

_(reads s)

_(ensures \result == setMem(s)[v])

{

for (size_t i = 0; i < s->len; i++)

_(invariant \forall size_t j; j < i

==> s->data[j] != v)

{

if (s->data[i] == v) return TRUE;

}

return FALSE;

}

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))  

_(writes s)

_(ensures \forall Val x; setMem(s)[x] ==

\old(setMem(s)[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

}

return TRUE;

}



pure functions

• a pure function is one that can be treated as a 
mathematical function of the state
– only pure functions can be used in specifications

• pure functions cannot have (visible) side effects
• all pure functions must terminate

– if no termination measure is given, VCC guesses one from 
the function parameters

• _(def …) is shorthand for _(ghost _(pure) …)
• pure functions have _(reads) clauses that specify what 

part of the heap they can depend on
• ex: linear and binary search could be marked as _(pure)



existential quantification

• proving an existential quantification requires 
searching for an appropriate instance

• resolution provers are pretty good at this, but 
SMT solvers are not (we’ll see why later)

• in proof checking, you would construct a 
suitable witness as part of building the proof

• you can do it in a program annotation by 
maintaining the witness as ghost data



typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

_(invariant \forall Val v; mem[v] <==>

\exists size_t j; j < len && data[j] == v)

} Set;

.

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

_(ghost s->mem[v] = \true)

}

return TRUE;

}

.



typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

// explicit witness

_(ghost size_t idx[Val])

_(invariant \forall size_t i;

i < len ==> mem[data[i]])

// witness for each abstract member

_(invariant \forall Val v; mem[v] ==>

idx[v] < len && data[idx[v]] == v)

} Set;

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

_(ghost s->mem[v] = \true)

// update the witness

_(ghost s->idx[v] = s->len)

s->len++;

}

return TRUE;

}

.



inductive datatypes

• if you are writing functional programs (but 
implementing them using concrete data), you can 
work as follows:
– define inductive data types

– define recursive functions on these types, and prove 
properties of them using pure functions with 
postconditions

– show that your concrete data structures implement 
these data types

– show that your concrete code simulates the recursive 
functions 



// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)   

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;    

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}



// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)   

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;    

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

if (t->l != t->r) Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}



// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)   

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;   

_(invariant l != r)

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}



functional programming warning

• resist the temptation to reduce imperative programming to 
functional programming
– use inductive data types as an abstraction only when that is 

really the abstraction you want to expose

• example: what is the right abstraction of a binary search 
tree?
– you can encode these as trees (with a recursive function to test 

for well-formedness)…
– …but that just forces the abstraction to expose more 

information than necessary
– proving that mutations preserve this abstraction just makes your 

job harder
– much simpler: use a set abstraction for each subtree; this makes 

it easy to state the local correctness of the data structure



linked data structures

• there are two basic approaches to ownership in linked data 
structures
– you can to keep ownership local; e.g. a list can own its successor

• we saw an example of this with trees
• this works well if you are always operating top-down through the 

structure

– you can have a ghost object own all of the nodes of the 
structure

• this is usually mandatory if you are going to use fine-grained atomic 
operations on the structure

• it is also convenient if you want to destructively update the structure 
in the middle

• finally, it allows you to use “generic” nodes within the structure, 
without having to define a separate type for each kind of structure



single owner approach

• the basic goals of invariants on the structure are 
– make sure that searches don’t miss items
– make sure that searches terminate

• reachability approach: maintain the binary reachability relation 
between nodes of the structure
– this allows first-order updates for arbitrary DAG data structures
– also allows many items to be deleted from linear structures in one 

step
– formulating these invariants is often complex 

• indexed approach: make structures ordered
– usually easiest for linear or tree-like structures
– for structures with ordered keys, this comes for free
– otherwise, indices can be maintained with a separate map
– this approach is usually easier to verify



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation 

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

void qInit(PQ q)

_(requires \extent_mutable(q))

_(writes \extent(q))

_(ensures \wrapped(q) && q->len == 0)

{

q->head = NULL;

q->tail = NULL;

_(ghost q->len = 0)

_(ghost q->\owns = {})

_(wrap q)

}

_(pure) BOOL qEmpty(PQ)

_(requires \wrapped(q))

_(reads q)

_(ensures \result == (q->len == 0))

{

return q->head == NULL;

}



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation 

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

void qEnqueue(PQ q, PNode n)

_(maintains \wrapped(q))

_(requires \extent_mutable(n))

_(writes \extent(n), q)

_(ensures q->len == \old(q->len + 1))

_(ensures \forall \natural i; i < q->len ==>

q->seq[i] == (i == \old(q->len) ? n

: \old(q->seq[i])))

{

n->nxt = NULL;

_(wrap n)

_(unwrapping q) {

if (!q->head) q->head = n;

else _(unwrapping q->tail)

q->tail->nxt = n;

q->tail = n;

_(ghost {

q->seq[q->len] = n;

q->idx[n] = q->len;

q->\owns += n;

q->len = q->len + 1;

})

}

}



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)  

_(ghost PNode seq[\natural])

// implementation    

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

PNode qDeque(PQ q)

_(maintains \wrapped(q))

_(requires !qEmpty(q))

_(writes q)

_(ensures \result == \old(q->seq[0]))

_(ensures \extent_mutable(\result))

_(ensures q->len == \old(q->len) - 1)

_(ensures \forall \natural i; i <q->len ==>

q->seq[i] == \old(q->seq[i+1]))

{

PNode res = q->head;

_(unwrapping q) {

_(ghost {

q->\owns -= q->head;

q->len = q->len – 1;

q->seq =

\lambda \natural i; q->seq[i+1];

q->idx = \lambda PNode n;

(q->idx[n] > 0) ? q->idx[n] - 1 : 0;

})         

q->head = q->head->nxt;

}

_(unwrap res)

return res;

}



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)  

_(ghost PNode seq[\natural])

// implementation    

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

PNode qDeque(PQ q)

_(maintains \wrapped(q))

_(requires !qEmpty(q))

_(writes q)

_(ensures \result == \old(q->seq[0]))

_(ensures \extent_mutable(\result))

_(ensures q->len == \old(q->len) - 1)

_(ensures \forall \natural i; i <q->len ==>

q->seq[i] == \old(q->seq[i+1]))

{

PNode res = q->head;

_(unwrapping q) {

_(ghost {

q->\owns -= q->head;

q->len = q->len – 1;

q->seq =

\lambda \natural i; q->seq[i+1];

q->idx = \lambda PNode n;

(q->idx[n] > 0) ? q->idx[n] - 1 : 0;

})         

q->head = q->head->nxt;

if (!q->head) q->tail = NULL;

}

_(unwrap res)

return res;

}



how about a model field?

• we could have written the abstract value as a model field…
• …but the resulting function would be recursive

– it’s very hard to tell how an update to a data structure changes 
the value of a recursive function on that data structure (it 
typically requires a separate proof)

– once you start going down the road of recursive functions, it’s 

• we strongly prefer to reason with first-order formulas 
instead of recursive functions
– first-order == local

• in particular, don’t try to replace quantification with 
recursion



non-hierarchical data structures

• consider a graph; there is no natural internal ownership 
structure

• sequentially, we could just put everything we know about it 
into a big global invariant
– but this is unlikely to scale as the graph gets more 

heterogeneous

• we’d like nodes to have local information about their 
neighbors, but then how do we change the nodes without 
opening up the whole structure?

• ultimately, the problem becomes one of sharing 
information without an ownership relationship

• this is exactly the problem we will address when we study…



what does concurrency have to do 
with sequential programming?

• concurrency is not about parallelization of 
activity

– changing the state safely is easy

• concurrency is about sharing information

– maintaining accurate knowledge about the state is 
hard

• message: keep paying attention, even if you 
only care about sequential programming



concurrency



the concurrency story

• each object has a 2-state invariant (a predicate on pairs of states)
• a state is good iff every object invariant holds on the stutter from that state
• a transition is good iff it satisfies every object invariant
• an execution (a sequence of states) is good iff every state and transition of 

the execution is good
• a transition is legal if the prestate is bad or the transition  satisfies the 

invariant of every updated object
• an execution is legal if the initial state is good and every transition is legal
• the invariant of object o is admissible iff

– from any good state, any legal transition satisfies o’s invariant
– if s1 is a good state and the transition from s1 to s2 is good, then stuttering in s2 

satisfies o’s invariant

• thm: if every object invariant is admissible, then every legal execution is 
good

• VCC checks that every object invariant is admissible, and that every 
transition invoked by the program is legal



2-state invariants

• in type definitions, object invariants actually talk about 2 states, a 
prestate and a poststate
\inv2(o) is the 2-state invariant of object o
\inv(o)(s) == \inv2(o)(s,s)
\old(e) in an object invariant means e evaluated in the prestate
\on_unwrap(o,p) == (\old(o->\closed) && !o->\closed ==> p)
\unchanged(e) == (\old(e) == e)

• user-defined invariants are guaranteed to hold for those transitions 
in which the object is closed in the prestate, the poststate, or both

• \inv2() and \inv() can appear in object invariants, but only with 
positive polarity
– otherwise, defining o with the invariant !\inv(o) introduces 

inconsistency



admissible and inadmissible invariants

assume all objects are always closed, and that all fields 
are volatile

• a: a.x >= \old(a.x)
• b: a.x < 5
• c: a.x > 10
• d: d.x == \old(d.x) || a.x == 5
• e: e.x == \old(e.x) || inv(f)
• f: e.x == 5
• g: g.x > \old(g.x)
• h: \inv(h)



is this admissible?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

} S;

.



?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

} S;

.



?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

_(invariant \this->\closed && pred ==> pred->\closed)

_(invariant \this->\closed && succ ==> succ->\closed)

} S;

.



?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

_(invariant \this->\closed && pred ==> pred->\closed)

_(invariant \this->\closed && succ ==> succ->\closed)

_(invariant \unchanged(pred) || !\old(pred) || \inv(\old(pred)))

_(invariant \unchanged(succ) || !\old(succ) || \inv(\old(succ)))

} S;

.



invariants and updates

• invariant admissibility is independent of how 
the program updates the state

• admissibility depends only on the invariants of 
the objects

• thus, admissibility can be checked based only 
on the type definitions, without looking at the 
function bodies

• in VCC, admissibility checking obeys C scoping 
rules (except for textual ordering)



reading and writing

• to read data sequentially, you must prove that it is not 
changing
– normally you prove this by proving it is a nonvolatile field of a 

closed object

• to write data sequentially, it must be mutable (owned by 
you and open)

• to read data atomically, you must prove that it is a field of a 
closed object
– you prove this using invariants from objects in your sequential 

domain

• to write data atomically, you must prove that it is a volatile 
field of an object that is closed, and the action must be 
legal



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = cnt->val; 

}

.

volatile fields



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

}

atomic actions



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

int y = _(atomic_read cnt) cnt->val;

_(assert x <= y) 

}

atomic actions



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

_(typedef struct O {

Counter *c; 

int x;

_(invariant c->\closed && x <= c->val)

} O;)

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost O o)

_(ghost o.c = cnt)

_(ghost o.x = x) 

_(wrap &o)

int y = _(atomic_read cnt) cnt->val;

_(assert \inv(&o))

_(assert x <= y)

_(unwrap &o)

}

atomic actions



implicit reduction

• the only time other threads seem to run is just 
before a non-ghost atomic action

- when other threads run, you lose all 
information about the state, except for the 
versions of the objects you own

- because non-pure functions can engage in 
atomic actions without reporting them, 
function calls also lose this information



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

_(typedef struct O {

Counter *c; 

int x;

_(invariant c->\closed && x <= c->val)

} O;)

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost O o)

_(ghost o.c = cnt)

_(ghost o.x = x) 

_(wrap &o)

int y = _(atomic_read cnt) cnt->val;

_(assert \inv(&o))

_(assert x <= y)

_(unwrap &o)

}

this works, but is a bit verbose…



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost \claim c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

_(unwrap &o)

}

.

using claims



claims

• a \claim is a ghost object with no data, created only for its invariant
• a \claim c is characterized by

– the objects it claims 
– its invariant

• the objects claimed by a claim claims must be of types marked 
_(claimable)
– claimable objects keep a (ghost) count \claim_count of the number of claims 

that claim it, and have an invariant that they cannot be unwrapped while this 
count is nonzero

– \wrapped0(o) == \wrapped(o) && o->\claim_count == 0

• the invariant of the claim must hold at the time it is formed, and be 
admissible
– the invariant includes implicitly that all of the claimed objects are closed
– this check is done inline where the claim is formed, rather than in a separate 

type definition

• claims serve as first-class chunks of knowledge; they can be assigned to 
variables, stored in data structures, passed in and out as parameters



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost \claim c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

_(unwrap &o)

}

.

owning the subject is a bit unrealistic…



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

void test(Counter *cnt)

_(requires cnt->\closed)

{

_(ghost \claim c = \make_claim({}, cnt->\closed))

int x = _(atomic_read c) cnt->val;

_(ghost c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

}

.

claim what you know



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val) 

} Counter;

void test(Counter *cnt)

_(requires cnt->\closed)

{

_(ghost \claim c = \make_claim({}, cnt->\closed)) // no longer admissible

int x = _(atomic_read cnt) cnt->val;

_(ghost c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

}

.

what if the subject can go away?



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

_(ghost \claim c1 = \make_claim({c}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c1, cnt) cnt->val;

_(assert x <= y)

_(ghost \destroy_claim(c1,{c}))

}

.

passing knowledge through a 
parameter



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

if (x == INT_MAX) return;

_(atomic c, cnt) {

if (cnt->val == x) cnt->val = x+1;

}

}

writing



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

if (x == INT_MAX) return;

_(atomic c, cnt) {

cmpXchg(&cnt->val, x,x+1);

}

}

_(atomic_inline) int cmpXchg(int *loc, int cmp, int xchg)

{

if (*loc == cmp) {

*loc = xchg;

return cmp;

}

else return *loc;

}



atomic actions

• an atomic action has the form 
_(atomic l) stmt

where l is a closed object list, such that 
– every field read in stmt is either \thread_local or a field of an object 

of l
– every field written in stmt is either writable or a volatile field of an 

object of l not marked _(read_only)
– the entire atomic statement preserves the invariants of all of the 

objects listed in l and not marked _(read_only)

• VCC will warn you if there is more than one access that is neither 
ghost nor \thread_local, but it is up to you to make sure that 
compiler treats these accesses as atomic.

• you can define _(atomic_inline) functions giving the semantics of 
atomic compiler intrinsics



ghost atomic actions

_(ghost_atomic o1, o2, … {stmt})

• this is just like an ordinary atomic action, 
except

– there is no scheduler boundary

– only ghost fields can be modified



last time

• admissible invariants

• using object invariants to move information 
forward in time

• claims

• atomic actions



review: a lock-free set
void setNew(Set *s)

_(requires \mutable(s))  

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !s->mem[v])

{

s->len = 0;

_(ghost s->mem = \lambda Val v; \false)

_(wrap s)

}

.

typedef struct Set {

// abstract value of the set

_(ghost volatile \bool mem[Val])

// abstract behavior of the set

_(invariant \forall Val v;

\old(mem[v]) && \this->\closed

==> mem[v])

// concrete representation

VVal data[SIZE];

volatile size_t len;

_(ghost volatile size_t idx[Val])

_(invariant len <= SIZE)

_(invariant \forall size_t i; i < len

==> mem[data[i]])

_(invariant \forall Val v; mem[v] <==>

idx[v] < len && data[idx[v]] == v)

_(invariant \old(len) <= len)

_(invariant \forall size_t i;

i < \old(len) ==> \unchanged(data[i]))

} Set;

.



review: a lock-free set
typedef struct Set {

// abstract value of the set

_(ghost volatile \bool mem[Val])

// abstract behavior of the set

_(invariant \forall Val v;

\old(mem[v]) && \this->\closed

==> mem[v])

// concrete representation

VVal data[SIZE];

volatile size_t len;

_(ghost volatile size_t idx[Val])

_(invariant len <= SIZE)

_(invariant \forall size_t i; i < len

==> mem[data[i]])

_(invariant \forall Val v; mem[v] <==>

idx[v] < len && data[idx[v]] == v)

_(invariant \old(len) <= len)

_(invariant \forall size_t i;

i < \old(len) ==> \unchanged(data[i]))

} Set;

.

BOOL setAdd(Set *s, Val v

_(ghost \claim c))

_(always c, s->\closed)

_(maintains \wrapped0(c))

_(writes c)

_(ensures \result ==> s->mem[v])

{

BOOL result;

_(atomic c,s) {

result = (s->len != SIZE);

if (result) {

s->data[s->len] = v;

_(ghost s->idx[v] = s->len)

s->len++;

_(ghost s->mem[v] = \true)

}

}

return result;

}

.



BOOL setMem(Set *s, Val v

_(ghost \claim c))

_(requires v)

_(maintains \wrapped0(c))

_(always c, s->\closed)

_(writes c)

_(ensures \result ==> s->mem[v])

_(ensures !\result ==>

!\old(s->mem[v]))

.

{

_(ghost size_t idx = s->idx[v])

_(ghost \bool isMem = s->mem[v])

_(ghost \claim cl = \make_claim({c},

s->\closed &&

(isMem ==> idx < s->len && s->data[idx] == v)))

size_t len = _(atomic_read cl,s) s->len;

_(ghost \destroy_claim(cl,{c}))

_(ghost cl = \make_claim({c},

s->\closed && len <= s->len &&

(isMem ==> idx < len && s->data[idx] == v)))

for (size_t i = 0; i < len; i++)

_(writes cl,c)

_(invariant \wrapped0(cl))

_(invariant idx < i ==> !isMem)

_(invariant \wrapped(c)

&& c->\claim_count == 1)

{

if (_(atomic_read cl,s) s->data[i] == v) {

_(ghost \destroy_claim(cl,{c}))

return TRUE;

}

}

_(ghost \destroy_claim(cl,{c}))

return FALSE;

}



exercise: break up element insertion

• use 0 as a “not yet filled” value

• maintain a ghost table of values to be filled in 
(values don’t change below len)

• use a cmpXchg to increase the len field

– if it succeeds, assign to the ghost table the value 
you are inserting

– use the ghost table to prove that you are not 
overwriting a nonzero value in the real data array



locking

• coarse-grained locking looks a lot like sequential 
programming
– a lock is just like a container
– its exclusivity comes from the exclusivity of ownership

• the only differences between reasoning with locks and 
reasoning about ordinary containers are
– you have to share the container with other objects, so instead 

of owning it, you have evidence that it is closed (typically a 
claim)

– instead of unwrapping a container to get its contents out, you 
call functions to get the contents out and put it back

• because a lock is just a container, any “real” 
synchronization depends on what you do with what you 
take out of the lock



typedef _(volatile_owns) struct Lock {

_(ghost \object ob)

….

} Lock

;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

;

void lockDestroy(Lock *l _(ghost \object ob))

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

;

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

;

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires \wrapped(l->ob))

_(writes l->ob)

;



// a type requiring lock protection

typedef struct S {

int x, y;

_(invariant x==y)

} S;

// a lock-protected S

typedef struct AtomicS {

Lock l;

S s;

_(invariant \mine(&l) && l.ob == &s)

} AtomicS;

// do an atomic update on s

void sOp(AtomicS *s _(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

_(unwrapping &s->s) {

s->s.x = 0;

s->s.y = 0;

}

lockRelease(&s->l _(ghost c));

}

typedef _(volatile_owns) struct Lock {

_(ghost \object ob)

….

} Lock

;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

;

void lockDestroy(Lock *l _(ghost \object ob))

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

;

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

;

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires \wrapped(l->ob))

_(writes l->ob)

;



typedef _(volatile_owns) struct Lock {

volatile BOOL locked;

_(ghost \object ob)

_(invariant locked || \mine(ob))

} Lock;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

{

l->locked = FALSE;

_(ghost l->ob = ob)

_(ghost l->\owns = {ob})

_(wrap l)

}

void lockDestroy(Lock *l)

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

{

_(unwrap l)

}

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

{

BOOL done;

do

{

_(atomic c,l) {

done = !cmpxchg(&l->locked, 0, 1);

_(ghost if (done) l->\owns -= l->ob)

}

} while (!done);

}

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires c != l->ob)

_(requires \wrapped(l->ob))  

_(writes l->ob)

{

_(atomic c,l) {

l->locked = FALSE;

_(ghost l->\owns += l->ob)

}

}



lock destruction

• when destroying a lock, there is no guarantee that you will 
find the protected object inside
– the last person to acquire the lock might have not bothered to 

give it back

• how should this evil be detected?
– the person who used their right to use the lock shouldn’t have 

been able to “give back” that right without unlocking

• solution: force lock acquirers to place a claim that the lock 
is closed “on deposit” in the lock

• the lock invariant is changed so that when the lock is 
locked, it owns a claim that claims it is closed

• thus, if you every open a lock, the lock invariant guarantees 
you get the protected object back!



reader-writer locks

• a reader lock on an object is essentially a claim that it is closed
• since the object itself might not be claimable, you need a separate, 

claimable dummy object that owns the protected object when its 
claim count is nonzero

• the lock keeps a concrete volatile count that is equal to the claim 
count on the dummy object

• to acquire a writer lock,  check that the (concrete) claim count is 
zero; if it is, take ownership of the protected object from the 
dummy object

• when a reader lock is released, you need to return the claim on the 
dummy object to decrease its claim count

• to prevent a reader from giving back a lesser claim, the lock 
maintains the set of outstanding claims it has given out, and 
requires that a thread releasing a reader lock give up one of these 
claims



approval

struct S {

volatile int x;

_(ghost \object o)

_(invariant \unchanged(x) || \inv2(o))

} s;

• changes to s->x are guaranteed to not break the invariant of of s->o

• thus, s->o can freely talk about s->x 

• as far as s->o can observe, s->x never changes except when “he” 
changes it

• this is like s->o having a read permission on s->x

• since there are no other invariants restricting change to s->x, this is 
almost like s->o owning s->x; the only difference is that s->o cannot 
give away his rights to another owner without opening up s



automata

• invariants describe generalized automata
– the invariants on closing an object capture the “initial states”
– the invariants on opening an object capture the “final states”
– the invariant controlling transitions between closed states 

represent the transition relation

• this means that you can take your favorite automata 
models (for safety) and use them inside a program

• because VCC invariants can mention the states of other 
parts of the system, you can also use these automata to 
capture synchronous models like CSP and IO automata



simulation

• in most formalisms, simulation is a relation on automata
• in VCC, (forward) simulation is just an invariant
• just as function calls are spec’d in terms of the effect on abstract state, the 

behavior of an object can be spec’d in terms of the behavior of its 
abstraction

• usual pattern:
– abstract object is described as ghost automaton, with its state changes owner-

approved
– a concrete object owns a volatile abstract object, with a coupling invariant 

relating the two
– because of the coupling invariant, some changes to the concrete state force 

update of the abstract state, which requires a check of the abstraction 
behavior

• the proof obligations match those of forward simulation, but the 
abstraction remains available for use in other invariants

• the code looks just like our previous code for sequential programming 
abstractions, except that the updates are atomic and don’t open the 
object



_(typedef struct AbsClock {

volatile \natural t;

_(invariant \unchanged(t) || t == \old(t) + 1)

_(invariant \approves(\this->\owner,t))

})

typedef struct Clock {

_(ghost AbsClock val)

volatile unsigned low;

_(ghost volatile \natural high)

_(invariant \mine(&val))

_(invariant val.t == low + RADIX*high)

} Clock;

void tick(Clock *c _(ghost \claim cl))

_(always cl, c->\closed)

{

_(atomic cl,c,&c->val) {

if (c->low == UINT_MAX) {

_(ghost c->high=c->high+1)

c->low = 0;

}

else c->low++;

_(ghost c->val.t = c->val.t+1)

}

}



making locked updates appear atomic

• locks have nothing to do with atomicity; they are just a 
mechanism to move ownership around

• often we use locks to implement atomic data types

• if we want to make updates to locked data to appear 
atomic to other threads, we have to couple the 
protected data with its abstract value
– this is the obligation of the client, and it’s type-dependent, 

so it belongs in the invariant of the protected object

• the abstract value itself will remain closed, so that 
clients can have claims on it



_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {  

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterNew(AtomicCounter *s)

_(requires \extent_mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

{

s->parts.impl.val = 0;

_(wrap &s->parts.impl)

_(ghost s->parts.abs.val = 0;)

_(wrap &s->parts.abs)

_(wrap &s->parts)

lockNew(&s->l _(ghost &s->parts));

_(wrap s)

}

• .

locked atomics



_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {  

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterUpdate(AtomicCounter *s

_(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

CounterParts *parts = &s->parts;

Counter *impl = &parts->impl;

_(ghost AbsCounter ^abs

= &parts->abs;)

_(unwrapping parts, impl) {

if (impl->val < INT_MAX) {

impl->val++;

_(ghost_atomic abs {

abs->val++;

_(bump_volatile_version abs)

})

}

}

lockRelease(&s->l _(ghost c));

}

• .

locked atomics



_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {  

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterUpdate(AtomicCounter *s

_(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

CounterParts *parts = &s->parts;

Counter *impl = &parts->impl;

_(ghost AbsCounter ^abs

= &parts->abs;)

_(unwrapping parts, impl) {

if (impl->val < INT_MAX) {

impl->val++;

_(ghost_atomic abs {

abs->val++;

_(bump_volatile_version abs)

})

}

}

lockRelease(&s->l _(ghost c));

}

• .

locked atomics



non-hierarchical invariants

• when operating on a large linked data structure, we often want to operate 
sequentially on a small part of the structure

• this often breaks invariants on the boundry of the updated part 
(admissibility usually requires that your neighbors are closed)

• the obvious solution is to unwrap the whole structure, but this requires 
knowledge of all the different node types

• instead, we can add a volatile ghost Boolean to each edge in each node 
indicating whether the party on the other side is potentially inconsistent 
(and hence not necessarily closed)
– these ghost Booleans are approved by the graph, so that it can keep track of 

which parts of the graph have to be “cleaned up”

• this lets you unwrap only those nodes you have to actually operate on, 
and then clean up the marked edges (by checking the invariants of the 
nodes on the boundary)

• this is a typical example of how invariants on volatile ghost field are useful 
for sequential programming



linearizability

• making an operation linearizable means identifying an external point at 
which the operation appears to occur
– in particular, we have to identify which operation occurs when, to avoid 

attributing the same update to more than one operation

• in a concurrent setting, we can’t do this with pre/post
• instead, we use an explicit ghost operation object with a flag that is set 

exactly when the operation seems to occur
– an invariant of the operation object says how the atomic object must change 

state when he goes from not done to done
– the atomic object has a pointer to the “current” op, to prevent multiple ops 

from simultaneously getting credit for the same update

• the use of explicit ops allows fancy effects, like one thread helping another 
by pushing his atomic operation forward (to avoid blocking)

• the owner of the object can either control creation of new ops or changes 
to the abstract state; each has advantages and disadvantages



polymorphism

• there are two principle ways to write polymorphic 
functions/data structures in VCC

• you can take an object, making the function 
polymorphic in the object type (in particular, in its 
invariant)
– we used this for locks

• you can express a type as a characteristic function over 
a fixed supertype, e.g. \object
– this works for all object types
– it even works for tuples of object types, e.g. if you have a 

function from objects to objects, you can express its 
specification as a characteristic function on pairs of objects



devices

• hardware devices (or more generally, the external 
world) can be viewed as concurrent threads

• there are two ways to model the behavior of the 
world

– as a program (i.e., to prove that its actions don’t break 
your invariants); this is useful for devices like MMUs

– as an abstract object with a transition relation (usually 
more convenient if the device doesn’t directly scribble 
on your memory)



assembly code

• embedded code (e.g., hypervisors) typically have some assembly 
code

• assembly instructions are treated as function calls (i.e., given 
contracts or expressed with inline code)
– these registers are made of special “hybrid” memory that doesn’t have 

an address but from which information is allowed to flow into real 
memory

• when you enter assembly code, the registers satisfy certain 
conditions specified by the platform ABI

• in practice, reasoning about most assembly code is very easy
• this simple view of assembly code works only for code that doesn’t 

stomp on control flow (e.g., thread switch by switching stacks)
– handling nasty control flow within VCC is an open problem



progress

• VCC doesn’t provide a notion of global progress

• a thread can guarantee its own local progress (in 
the form of termination)

• a thread cannot depend on progress from other 
threads (because there is no place to express 
such progress in shared object invariants)
– ex: if you put <>p in a type spec, who is responsible 

for making this happen?

• a decent framework for “modular progress” is a 
nice research challenge



hybrid systems

• introduce time as a ghost object with time moving forward
• the god of time keeps track of which objects in the world are “timed”; when 

moving time forward, he is obliged to preserve their invariants
• timed objects specify their continuous behavior by invariants expressing what they 

require when time changes (discontinuously)
– e.g., a physical quantity typically is specified to not change without time changing, and change 

according to some function of the previous state when time moves forward

• a deadline is a timed object that prevents time from moving past a specified 
moment

– once a deadline time is reached, time is frozen and the deadline can never be destroyed

• this allows deadlines to be used to prove safety properties of timed and hybrid 
systems

• soundness of the use of deadlines depends on proving that every deadline object 
is successfully destroyed

– deadlines can only be created on the stack of terminating functions!

• to prove that deadlines are not reached, you need assumptions that bound how 
long it can take certain sequential pieces of code to execute



proof checking

• you can develop substantial mathematical 
theories in VCC using ghost code and ghost 
functions (e.g., as we did with trees)

• but VCC is not an ideal proof checking 
environment

• you can transfer theories between VCC and 
Isabelle via ghost types
– this allows a straightforward translation without 

involving C semantics



encoding other disciplines

• many disciplines for concurrency control can be coded up using 
admissible invariants and ghost data, e.g.
– ownership
– CSL
– counting permissions
– fractional permissions
– deny-guarantee
– concurrent abstract predicates

• this means that you can use these disparate mechanisms in a single 
program, or even in a single function/object

• the downside is that you have to explicitly manipulate things in 
ghost code, rather than depending on a fancy logic to do automatic 
programming for you
– doing this in a reasonable way for ghost code might be a good project



refinement

• you can develop your code top-down, 
refinement-wise in several ways

– give functions to contracts, but omit giving 
implementations

– define types with their abstractions and public 
invariants, but omit their concrete 
implementations

– use block contracts to specify chunks of code 
without having to fill in implementations



some applications of VCC to real code

• hypervisors

• OS kernel code

• efficient bignum arithmetic

• crypto code

• TPM 2.0 spec

• lock-free optimistic multiversion concurrency 
control code

• lock-free resizable hash tables



conclusion

• admissible invariants and ghost code provide a 
relatively simple foundation for 
– programmers to write verified code
– encoding new programming disciplines

• deductive verification != proof checking
– verification = programming + automatic deduction

• the most important challenges are on the boundary of 
research and engineering
– ex: more predicatable and scalable deduction

• verified programming is practical now for experts
• verified programming is on the cusp of being practical 

for ordinary programmers



last bits

• if you tried to use VCC and gave up (or didn’t), I’d like 
to hear about why. Feel free to send email (perhaps 
anonymously) to ernie.cohen@microsoft.com. 
(particularly sought is feedback from people who used 
both VCC and Dafny.)

• if you are going to FM in Paris, let me know if you want 
to be on a VCC team for the verified programming 
competition

• if you are interested in verified software, keep an eye 
out for announcements for VSTTE 2013 (late May, in 
California)

• thank you!

mailto:ernie.cohen@microsoft.com
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