
How to Verify Your Software

ernie cohen

Microsoft

verified programming

• in this course, you will experience the joys (and agonies) of
writing verified code
– you will verify the code you write, not just a model of the code
– the code will be written in C, (still the most popular language for

writing efficient code)
– verification means the verifier will prove that your code meets

its specs

• two possible outcomes, both good:
– you find that you like verified programming, and want to do

more of it (see me if this happens)
– you are disgusted with the primitive state of verified

programming, and want to improve the tools (see me if this
happens)

labs

• verified programming is not a spectator sport
• we will have lab time in the lecture hall every day immediately after

the discussion period, unless announced otherwise
• we have a local network set up in the lab that you can use to

download/share software (wait for announcements)
• the labs are optional, and you can come and go as you please; you

can work on exercises whenever you want…
• … but you are likely to get stuck when getting started, so you will

save lots of time by working when/where there are people to help
you

• rule #1: if you are stuck on something for more than 5 minutes, ask
somebody for help

• if you have a piece of code you’re eager to verify, talk to me

tool

• we will be programming in C, using VCC (Verified Concurrent C)
– today, this requires Windows/Visual Studio to run
– even if you don’t have these, stay for the lab and we will try to get you

set up
– if you have successfully set up a non-windows box (e.g., with a VM),

consider offering to share your setup with other

• VCC is not a production-quality tool, but it has been used to
successfully verify highly concurrent code (100KLOC, mostly from
products)

• if you don’t know C, you should (especially if you want to build
tools)

• if you know an imperative programming language (e.g. Java, C#) you
should be able to pick it up what you need from the lectures (ask
friends for help if you need it)

why verify software?

• without verification, you can’t write correct
software

• with verification, you can write correct
software

question

• hopefully, you learned about binary search in school

• how many of you think you could program a correct
binary search? (using your favorite programming tools)

• how long would it take you to do it?

• how sure would you be that it was correct?

• how much time would it take you to document it? how
precise would your documentation be?

• how much work would it be for you to test it
thoroughly?

cautionary tale: binary search

• algorithm first published in 1946, but first correct version didn’t appear until
1962

• in 1988, a survey of 20 textbooks on algorithms found that at least 15 of
them had errors

• Bentley reports giving it as a programming problem to over 100 professional
programmers from Bell Labs and IBM, with 2 hours to produce a correct
program. At least 90% of the solutions were wrong. Dijkstra reported similar
statistics in experiments he performed at many institutions.

• Bentley published a CACM “programming pearl” on binary search and
proving it correct, expanded to 14 pages in “Programming Pearls” (1986).

• Joshua Bloch used Bentley’s code as a basis for the binary search
implementation in the JDK, in 1997.

• in 2006, a bug was found in the JDK code, the same bug that was in Bentley’s
code, which nobody had noticed for 20 years. The same bug was in the C
code Bentley published for the second edition of his book in 2000.

• these are not exactly your average programmers

Bloch’s conclusion

“…The general lesson that I take away from this bug is
humility: It is hard to write even the smallest piece of code
correctly, and our whole world runs on big, complex pieces of
code.”

“We programmers need all the help we can get, and we
should never assume otherwise. Careful design is great.
Testing is great. Formal methods are great. Code reviews are
great. Static analysis is great. But none of these things alone
are sufficient to eliminate bugs: They will always be with us. A
bug can exist for half a century despite our best efforts to
exterminate it. We must program carefully, defensively, and
remain ever vigilant.”

cautionary tale: Chord

• a distributed (ring) hash table algorithm, developed at MIT
• the 4th most cited paper in computer science, according to

Citeseer; won SIGCOMM “Test of Time” award in 2011.
• from the paper: “Three features that distinguish Chord

from many other peer-to-peer lookup protocols are its
simplicity, provable correctness, and provable
performance.”

• the proofs in the paper (and the protocol itself) are buggy;
not one of the 7 invariants given in the paper is an invariant

• this is not an isolated example; many published journal
concurrent/distributed algorithms are incorrect

cautionary tale: crypto protocols

• in 1995, people finally got around to model-
checking and verifying crypto protocols
(assuming perfect cryptography)

– these are basically 2-10 line distributed programs

• more than half of the published
authentication protocols were buggy

some takeaways

• people can’t write correct software

• many eyes looking at code doesn’t guarantee
correctness

• it’s not good enough to verify algorithms; you
have to verify code

• deductive verification is not free, but neither
is testing; a typical software shop spends
more on trying to eliminate bugs than they
spend on writing the code

how to reason about programs

• a programming student once approached the
Talmudic sage Hillel, seeking to learn how to
reason about programs

• the student was impatient, and told Hillel he
wanted to learn all there was to know about
program reasoning while standing on one foot

• Hillel replied, “use invariants; the rest is
commentary. now go forth and verify some
code.”

invariants

• we’re going to prove things about programs by
constructing a big fact F about the program

• we prove F by proving that it is true initially, and that it
can never go from being true to being false; we then
say F is an “invariant”

• F is the conjunction of many separate statements
about the program; these will be of the form “this is
true here”:
– “this is true whenever control reaches this location”
– “this is always true for this data structure”

• these annotations will be sprinkled throughout the
code

example

unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

_(invariant i + j == x + y)

{

i--;

j++;

}

return j;

}

_(requires p)
p holds on entry to the function

(i.e. p is a precondition of the function)

_(ensures p)
p holds on return from the function

(i.e., p is a postcondition of the function)

\result is the value returned from the function

_(invariant p)
p holds whenever control reaches the top of the loop (before
evaluating the loop test)

in each case, p is written as a C expression (possibly
using some additional stuff)

modular verification

• the _(requires) and _(ensures) annotations provide the specification (or
contract) for the function add

• when reasoning about a call to a function, we will use only its
specification, not its implementation
– when you call a function, you must prove that its preconditions will be

satisfied
– on return from the function, you can assume its postconditions
– in a real project, you put the specifications in the header files

• this has several big advantages:
– it hides irrelevant detail from the reasoner (man or machine)
– you can verify the functions separately
– if you change the body of a function without changing its specification, you

know the change won’t break anything else
– the header can serve as the documentation of the function
– a programmer can program to the specification of a function that hasn’t been

written yet

example

unsigned add3(unsigned x, unsigned y, unsigned z)

_(requires x + y + z <= UINT_MAX)

_(ensures \result == x + y + z)

{

unsigned i = add(x,y);

return add(i,z);

}

.

linear search

size_t lsearch(int *a, size_t len, int v)

_(requires \thread_local_array(a,len))

_(ensures \forall size_t i; i < \result ==> a[i] != v)

_(ensures \result < len ==> a[\result] == v)

{

for (size_t i = 0; i < len; i++)

_(invariant \forall size_t j; j < i ==> a[j] != v)

{

if (a[i] == v) return i;

}

return len;

}

\thread_local_array(a,len))
a points (at least) len items with type that of *a

these items are all “owned” by this thread

\forall T v; p

\exists T v; p
universal/existential quantification

p ==> q

p <== q

p <==> q
p “only if” / “if” / “iff and only iff” q

side effects

void test() {

int a[10];

_(assume a[3] == 3)

lsearch(a,10,3);

_(assert a[3] == 3)

}

• should this verify? (presumably yes)

• but how do we know that lsearch doesn’t change a[3]?

• rule: a function has to declare (in its spec) anything
that might change, if the caller might otherwise
“remember” something about it

homework for next time

• write code for binary search, using your favorite
method. then specify and verify it; did you find
any bugs?

• specify, program, and verify the following:
– compute the square root of an int
– find the maximum element of an array
– check if an array is sorted
– determines if two sorted arrays have a common

element
– a function that sorts an array
– a function that reverses an array

review
_(requires p)

_(ensures p)

_(writes o)

_(assert p)

_(assume p)

_(invariant p)

\result

\forall

\exists

\mutable(o)

\mutable_array(o,len)

\thread_local(o)

\thread_local_array(o,len)

termination

• to prove that a function terminates, you need to prove two things:
– no infinite loops
– no infinite recursion

• you prove absence of an infinite loop by giving a measure that
decreases on each iteration through the loop

• you prove absence of an infinite recursion by giving a lexicographic
measure that decreases on each function call
– VCC implicitly adds a highest-order measure of the “rank” of the

function in the call graph, for functions whose bodies it sees
– in practice, this means that you can just write _(decreases 0) for any

nonrecursive function
– mututally recursive functions must be declared so in their specs (see

the manual for details)

termination examples

void test(unsigned x)

_(decreases x)

{

for (unsigned i = 0; i<x; i++)

_(decreases x-i)

{

test(i);

}

}

_(\natural Ackermann(\natural m, \natural n)

_(decreases m, n)

{

if (m == 0) return n + 1;

else if (n == 0) return Ackermann(m - 1, 1);

else return Ackermann(m - 1, Ackermann(m, n - 1));

})

objects and pointers

• a program text defines a fixed set of objects
• each object o == <\addr(o),\typeof(o),\ghost(o)>

– the type of an object determines its fields and their types
– each field is either concrete or ghost
– each concrete field occupies a set of byte addresses in memory

• \state == ObjectsFieldnameValues
• note: the objects are logically disjoint
• a pointer is either an object or a pair <o,f> where f is a field name

– \embedding(<o,f>) == o
– \is_primitive_ptr(<o,f>) == \true;
– \is_primitive_ptr(o) == \false
– &(o->f) == <o,f>; *<o,f> in state S == S(o)(f)

• \object is (for the moment) the type of pointers, rather than the
type of objects 

validity and aliasing

• each object has a ghost \bool field \valid, which determines
whether it is one of the “current” objects

• two objects overlap iff they have overlapping concrete fields
• VCC forces programs to maintain the invariant that \valid objects

don’t alias
– you can only make an object o valid if you simultaneously make invalid

a set of objects whose concrete fields cover the concrete fields of ob

• proof obligations guarantee that all reads and writes are of fields of
\valid objects

• these conditions allow reads and writes of concrete fields to be
implemented by reads and writes to shared memory
– maintain the global invariant that concrete fields of \valid objects

agree with their corresponding bytes in memory

• so these conditions immediately eliminate all “crazy” aliasing in C

closed objects and ownership

• each object has a \bool field \closed
– only valid objects are \closed

• each object has an \object field \owner (which must be an object)
– only threads can own open objects
– only the owner of an object can open or close it

• in the context of a thread,
\wrapped(o)

means o is a closed object owned by \me

\mutable(o)

means o is open object owned by \me, or o == <o’,f> and \mutable(o’)
\thread_local(o)

means o is transitively owned by \me, or o==<o’,f> and \thread_local(o’)
_(wrap o)

closes o

_(unwrap o)

opens o

object invariants

each object o has an invariant \inv(o)

• \inv(o) holds whenever o->\closed

– wrapping o asserts \inv(o)

– unwrapping o assumes \inv(o)

ghost data

• we make heavy use of ghost data
– ghost variables in functions
– ghost fields in objects
– ghost parameters to functions

• ghost data is used to facilitate verification, but is not
part of the compiled program

• ghost data can have some additional types
– \natural, \integer, \object, \state
– maps
– records (structs, but pure values without identity)
– inductive data types
– (a few others)

#define ONE ((\natural) 1)

#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

// abstract value

_(ghost \natural val)

// implementation

unsigned low;

unsigned high;

//coupling invariant

_(invariant val == low + high * RADIX)

} Double;

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && d->val == 0)

{

d->low = 0;

d->high = 0;

_(ghost d->val = 0)

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires d->val + 1 < DBL_MAX)

_(ensures d->val == \old(d->val) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else

d->low++;

_(ghost d->val = d->val + 1)

}

}

_(ghost …)

ghost code or data declaration

\natural

type of natural numbers

\span(d)

union of d and pointers to all d’s primitive fields

\extent(d)

union of \span(d) and the extents of d’s nonprimitive fields

\mutable(d)

d is open and owned by \me

\extent_mutable(d)

\extent(d) is open and owned by \me

\wrapped(d)

d is closed and owned by \me

_(wrap d)

set d->\closed to true

_(unwrap d)

set d->\closed to false

_(unwrapping d1, d2,) { … }

sugar for _(unwrap d1) _(unwrap d2) … _(wrap d2) _(wrap d1)

objects owning objects

• each object has a field \owns (a set of objects)
– when o->\closed, o->\owns gives the objects owned by o

• _(unwrap o) transfers ownership of all objects in o->\owns
from o->\owner to \me
– this involves a check that they are all \wrapped and writable

• _(wrap o) transfers ownership of all objects in o->\owns
from \me to o->\owner

• by default, o->\owns is static and is computed from the
invariant of o

• if a type is marked _(dynamic_owns), o->\owns is
maintained manually (in ghost code)

• if a type is marked _(volatile_owns), o->\owns can change
even while the object is closed (subject to o’s invariants)

#define DRADIX (DBL_MAX + ONE)

#define QUAD_MAX \

(DBL_MAX + DBL_MAX * DRADIX)

typedef struct Quad {

// abstract value

_(ghost \natural val)

Double low;

Double high;

_(invariant \mine(&low) && \mine(&high))

//coupling invariant

_(invariant val ==

low.val + high.val * DRADIX)

} Quad;

void quadNew(Quad *q)

_(requires \extent_mutable(q))

_(writes \extent(q))

_(ensures \wrapped(q) && q->val == 0)

{

dblNew(&q->low);

dblNew(&q->high);

_(ghost q->val = 0)

_(wrap q)

}

void quadDestroy(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(ensures \extent_mutable(q))

{

_(unwrap q)

_(unwrap &q->low)

_(unwrap &q->high)

}

void quadInc(Quad *q)

_(maintains \wrapped(q))

_(writes q)

_(requires q->val + 1 < QUAD_MAX)

_(ensures q->val == \old(q->val) + 1)

{

_(assert \inv(&d->low))

_(unwrapping q) {

if (isDblMax(&q->low)) {

dblInc(&q->high);

dblZero(&q->low);

} else

dblInc(&q->low);

_(ghost q->val = q->val + 1)

}

}

objects are not fields

• a struct or union nested inside another struct or
union is logically a completely separate object,
one that just happens to have an arithmetically
related address

• therefore, the low and high members of a Quad
are not actually fields of the Quad

• in particular, if the invariants of the Quad type
had allowed it, low and high could be owned by
another object, and could change while the Quad
is closed

admissibility

• the invariant of Quad talks about low.val and high.val…
• …but these are fields of completely separate objects!
• what stops someone from modifying these fields and

falsifying the invariant?
• answer: the Quad has an invariant that it owns &low and

&high
• for every type, VCC checks that the invariant of an object o

of that type cannot be broken (while o is closed) by a legal
change to the state
– if Quad o is closed and the state changes without changing o,

then by the invariant of o, o.low is owned by o. Since o is not a
thread, o.low is closed. A legal update cannot change a
nonvolatile field of a closed object, so o.low.val doesn’t change.

framing

• on a function call, the caller forgets everything he knew about the state,
except for the “version” of those objects that \me owns
– the values in the fields of o, and the versions of the objects owned by o, are a

(fixed) function of the version of o
– if o is not written, the values of all objects transitively owned by o are also a

function of the version of o, so they are also unchanged

• the _(writes) specifications in a function contract are there to tell the
caller what additional information he has to forget

• therefore, the _(writes) clauses don’t have to mention any objects that
were not owned by \me, or fields of objects that were not \mutable, when
the function is called

• conversely, if you want to remember more about the state, you need to
get ownership of additional objects whose invariants give the information
you want to move “into the future” (perhaps by creating them yourself);
we’ll see a lot of this starting in the next lecture

review

• function contracts

• loop invariants

• data invariants; admissibility

• ownership; sequential domains

• framing

• ghost data and code

size_t bsearch(int *a, size_t len, int v)

{

size_t i = 0, j = len;

while (i < j)

{

size_t k = (i + j)/2;

if (a[k] == v) return k;

if (a[k] < v) i = k+1;

else j = k;

}

return len;

}

size_t bsearch(int *a, size_t len, int v)

_(requires \mutable_array(a,len))

_(requires \forall size_t i,j; i <= j && j <= len ==> a[i] <= a[j])

_(ensures \result == len ==> \forall size_t i; i < len ==> a[i] != v)

_(ensures \result != len ==> \result < len && a[\result] == v)

_(decreases 0)

{

size_t i = 0, j = len;

while (i < j)

_(invariant i <= j && j <= len)

_(invariant \forall size_t k; k < i ==> a[k] < v)

_(invariant \forall size_t k; j <= k && k < len ==> a[k] > v)

{

size_t k = i + (j-i)/2;

if (a[k] == v) return k;

if (a[k] < v) i = k+1;

else j = k;

}

return len;

}

model fields

• the alternative to representing the abstract state with ghost fields is to use
a function of the concrete state

• these are sometimes called model fields, because they are materialized as
fields in some systems

• advantages vs. ghost fields:
– you don’t have to manually update the ghost state
– in a concurrent setting, the model fields automatically change instantaneously

when the concrete state changes, so other objects that

• disadvantages:
– sometimes the abstract state is related only relationally to the concrete state
– if the abstract state is a function of the state of other objects, and is subject to

further invariants, admissibility has to be proved for every possible update to
the other objects, rather than just the ones actually invoked in code. (this isn’t
a problem if the concrete state is all owned by the object with the invariants)

– with a ghost field, the verifier can more easily take advantage of parts of the
abstract value that doesn’t change (since it is reflected syntactically rather
than semantically)

– it is harder to prove admissibility for invariants that use model fields
– reads clauses don’t take into account model fields

#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

// abstract value

_(ghost \natural val)

// implementation

unsigned low;

unsigned high;

//coupling invariant

_(invariant val == low + high * RADIX)

} Double;

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && d->val == 0)

{

d->low = 0;

d->high = 0;

_(ghost d->val = 0)

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires d->val + 1 < DBL_MAX)

_(ensures d->val == \old(d->val) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else

d->low++;

_(ghost d->val = d->val + 1)

}

}

#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

unsigned low;

unsigned high;

} Double;

_(def \natural dblVal(Double *d) {

return d->low + d->high * RADIX;

})

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && dblVal(d) == 0)

{

d->low = 0;

d->high = 0;

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires dblVal(d) < DBL_MAX)

_(ensures dblVal(d) ==

\old(dblVal(d)) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else d->low++;

}

}

#define DRADIX (DBL_MAX + ONE)

#define QUAD_MAX \

(DBL_MAX + DBL_MAX * DRADIX)

typedef struct Quad {

Double low;

Double high;

_(invariant \mine(&low) && \mine(&high))

} Quad;

_(def \natural qval(Quad *q) {

return dblVal(&q->low)

+ dblVal(&q->high) * DRADIX;

})

void quadNew(Quad *q)

_(requires \extent_mutable(q))

_(writes \extent(q))

_(ensures \wrapped(q) && qval(q) == 0)

{

dblNew(&q->low);

dblNew(&q->high);

_(wrap q)

}

void quadDestroy(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(ensures \extent_mutable(q))

{

_(unwrap q)

_(unwrap &q->low)

_(unwrap &q->high)

}

void quadInc(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(requires qval(q) + 1 < QUAD_MAX)

_(ensures qval(q) == \old(qval(q)) + 1)

{

_(unwrapping q) {

_(assert \inv(&q->low))

if (isDblMax(&q->low)) {

dblInc(&q->high);

dblZero(&q->low);

} else dblInc(&q->low);

}

}

maps and records

_(typedef \bool UnsSet[unsigned])

_(typedef \bool NatSet[\natural])

_(typedef \bool UnsSetSet[UnsSet])

_(typedef _(record) struct FinNatSetSeq {

NatSet vals[\natural];

\natural len;

} FinNatSeq;)

_(void test() {

\natural squares[\natural];

squares = (\lambda \natural n; n*n);

FinNatSeq s;

s.len = 1000;

s.vals = (\lambda \natural n;

(\lambda \natural m; m < n));

})

typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

_(invariant \forall Val v; mem[v] <==>

\exists size_t j; j < len && data[j] == v)

} Set;

void setNew(Set *s)

_(requires \mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !s->mem[v])

{

s->len = 0;

_(ghost s->mem = \lambda Val v; \false)

_(wrap s)

}

_(pure) BOOL setMem(Set *s, Val v)

_(requires \wrapped(s))

_(reads s)

_(ensures \result == s->mem[v])

{

for (size_t i = 0; i < s->len; i++)

_(invariant \forall size_t j; j < i

==> s->data[j] != v)

{

if (s->data[i] == v) return TRUE;

}

return FALSE;

}

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

_(ghost s->mem[v] = \true)

}

return TRUE;

}

typedef int Val;

_(typedef \bool valSet[Val])

typedef struct Set {

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

} Set;

_(def valSet setMem(Set *s) {

return \lambda Val v; \exists size_t i;

i < s->len && s->data[i] == v;

})

void setNew(Set *s)

_(requires \mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !setMem(s)[v])

{

s->len = 0;

_(wrap s)

}

_(pure) BOOL setMem(Set *s, Val v)

_(requires \wrapped(s))

_(reads s)

_(ensures \result == setMem(s)[v])

{

for (size_t i = 0; i < s->len; i++)

_(invariant \forall size_t j; j < i

==> s->data[j] != v)

{

if (s->data[i] == v) return TRUE;

}

return FALSE;

}

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; setMem(s)[x] ==

\old(setMem(s)[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

}

return TRUE;

}

pure functions

• a pure function is one that can be treated as a
mathematical function of the state
– only pure functions can be used in specifications

• pure functions cannot have (visible) side effects
• all pure functions must terminate

– if no termination measure is given, VCC guesses one from
the function parameters

• _(def …) is shorthand for _(ghost _(pure) …)
• pure functions have _(reads) clauses that specify what

part of the heap they can depend on
• ex: linear and binary search could be marked as _(pure)

existential quantification

• proving an existential quantification requires
searching for an appropriate instance

• resolution provers are pretty good at this, but
SMT solvers are not (we’ll see why later)

• in proof checking, you would construct a
suitable witness as part of building the proof

• you can do it in a program annotation by
maintaining the witness as ghost data

typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

_(invariant \forall Val v; mem[v] <==>

\exists size_t j; j < len && data[j] == v)

} Set;

.

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

_(ghost s->mem[v] = \true)

}

return TRUE;

}

.

typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

// explicit witness

_(ghost size_t idx[Val])

_(invariant \forall size_t i;

i < len ==> mem[data[i]])

// witness for each abstract member

_(invariant \forall Val v; mem[v] ==>

idx[v] < len && data[idx[v]] == v)

} Set;

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

_(ghost s->mem[v] = \true)

// update the witness

_(ghost s->idx[v] = s->len)

s->len++;

}

return TRUE;

}

.

inductive datatypes

• if you are writing functional programs (but
implementing them using concrete data), you can
work as follows:
– define inductive data types

– define recursive functions on these types, and prove
properties of them using pure functions with
postconditions

– show that your concrete data structures implement
these data types

– show that your concrete code simulates the recursive
functions

// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}

// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

if (t->l != t->r) Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}

// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;

_(invariant l != r)

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}

functional programming warning

• resist the temptation to reduce imperative programming to
functional programming
– use inductive data types as an abstraction only when that is

really the abstraction you want to expose

• example: what is the right abstraction of a binary search
tree?
– you can encode these as trees (with a recursive function to test

for well-formedness)…
– …but that just forces the abstraction to expose more

information than necessary
– proving that mutations preserve this abstraction just makes your

job harder
– much simpler: use a set abstraction for each subtree; this makes

it easy to state the local correctness of the data structure

linked data structures

• there are two basic approaches to ownership in linked data
structures
– you can to keep ownership local; e.g. a list can own its successor

• we saw an example of this with trees
• this works well if you are always operating top-down through the

structure

– you can have a ghost object own all of the nodes of the
structure

• this is usually mandatory if you are going to use fine-grained atomic
operations on the structure

• it is also convenient if you want to destructively update the structure
in the middle

• finally, it allows you to use “generic” nodes within the structure,
without having to define a separate type for each kind of structure

single owner approach

• the basic goals of invariants on the structure are
– make sure that searches don’t miss items
– make sure that searches terminate

• reachability approach: maintain the binary reachability relation
between nodes of the structure
– this allows first-order updates for arbitrary DAG data structures
– also allows many items to be deleted from linear structures in one

step
– formulating these invariants is often complex

• indexed approach: make structures ordered
– usually easiest for linear or tree-like structures
– for structures with ordered keys, this comes for free
– otherwise, indices can be maintained with a separate map
– this approach is usually easier to verify

typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

void qInit(PQ q)

_(requires \extent_mutable(q))

_(writes \extent(q))

_(ensures \wrapped(q) && q->len == 0)

{

q->head = NULL;

q->tail = NULL;

_(ghost q->len = 0)

_(ghost q->\owns = {})

_(wrap q)

}

_(pure) BOOL qEmpty(PQ)

_(requires \wrapped(q))

_(reads q)

_(ensures \result == (q->len == 0))

{

return q->head == NULL;

}

typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

void qEnqueue(PQ q, PNode n)

_(maintains \wrapped(q))

_(requires \extent_mutable(n))

_(writes \extent(n), q)

_(ensures q->len == \old(q->len + 1))

_(ensures \forall \natural i; i < q->len ==>

q->seq[i] == (i == \old(q->len) ? n

: \old(q->seq[i])))

{

n->nxt = NULL;

_(wrap n)

_(unwrapping q) {

if (!q->head) q->head = n;

else _(unwrapping q->tail)

q->tail->nxt = n;

q->tail = n;

_(ghost {

q->seq[q->len] = n;

q->idx[n] = q->len;

q->\owns += n;

q->len = q->len + 1;

})

}

}

typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

PNode qDeque(PQ q)

_(maintains \wrapped(q))

_(requires !qEmpty(q))

_(writes q)

_(ensures \result == \old(q->seq[0]))

_(ensures \extent_mutable(\result))

_(ensures q->len == \old(q->len) - 1)

_(ensures \forall \natural i; i <q->len ==>

q->seq[i] == \old(q->seq[i+1]))

{

PNode res = q->head;

_(unwrapping q) {

_(ghost {

q->\owns -= q->head;

q->len = q->len – 1;

q->seq =

\lambda \natural i; q->seq[i+1];

q->idx = \lambda PNode n;

(q->idx[n] > 0) ? q->idx[n] - 1 : 0;

})

q->head = q->head->nxt;

}

_(unwrap res)

return res;

}

typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

PNode qDeque(PQ q)

_(maintains \wrapped(q))

_(requires !qEmpty(q))

_(writes q)

_(ensures \result == \old(q->seq[0]))

_(ensures \extent_mutable(\result))

_(ensures q->len == \old(q->len) - 1)

_(ensures \forall \natural i; i <q->len ==>

q->seq[i] == \old(q->seq[i+1]))

{

PNode res = q->head;

_(unwrapping q) {

_(ghost {

q->\owns -= q->head;

q->len = q->len – 1;

q->seq =

\lambda \natural i; q->seq[i+1];

q->idx = \lambda PNode n;

(q->idx[n] > 0) ? q->idx[n] - 1 : 0;

})

q->head = q->head->nxt;

if (!q->head) q->tail = NULL;

}

_(unwrap res)

return res;

}

how about a model field?

• we could have written the abstract value as a model field…
• …but the resulting function would be recursive

– it’s very hard to tell how an update to a data structure changes
the value of a recursive function on that data structure (it
typically requires a separate proof)

– once you start going down the road of recursive functions, it’s

• we strongly prefer to reason with first-order formulas
instead of recursive functions
– first-order == local

• in particular, don’t try to replace quantification with
recursion

non-hierarchical data structures

• consider a graph; there is no natural internal ownership
structure

• sequentially, we could just put everything we know about it
into a big global invariant
– but this is unlikely to scale as the graph gets more

heterogeneous

• we’d like nodes to have local information about their
neighbors, but then how do we change the nodes without
opening up the whole structure?

• ultimately, the problem becomes one of sharing
information without an ownership relationship

• this is exactly the problem we will address when we study…

what does concurrency have to do
with sequential programming?

• concurrency is not about parallelization of
activity

– changing the state safely is easy

• concurrency is about sharing information

– maintaining accurate knowledge about the state is
hard

• message: keep paying attention, even if you
only care about sequential programming

concurrency

the concurrency story

• each object has a 2-state invariant (a predicate on pairs of states)
• a state is good iff every object invariant holds on the stutter from that state
• a transition is good iff it satisfies every object invariant
• an execution (a sequence of states) is good iff every state and transition of

the execution is good
• a transition is legal if the prestate is bad or the transition satisfies the

invariant of every updated object
• an execution is legal if the initial state is good and every transition is legal
• the invariant of object o is admissible iff

– from any good state, any legal transition satisfies o’s invariant
– if s1 is a good state and the transition from s1 to s2 is good, then stuttering in s2

satisfies o’s invariant

• thm: if every object invariant is admissible, then every legal execution is
good

• VCC checks that every object invariant is admissible, and that every
transition invoked by the program is legal

2-state invariants

• in type definitions, object invariants actually talk about 2 states, a
prestate and a poststate
\inv2(o) is the 2-state invariant of object o
\inv(o)(s) == \inv2(o)(s,s)
\old(e) in an object invariant means e evaluated in the prestate
\on_unwrap(o,p) == (\old(o->\closed) && !o->\closed ==> p)
\unchanged(e) == (\old(e) == e)

• user-defined invariants are guaranteed to hold for those transitions
in which the object is closed in the prestate, the poststate, or both

• \inv2() and \inv() can appear in object invariants, but only with
positive polarity
– otherwise, defining o with the invariant !\inv(o) introduces

inconsistency

admissible and inadmissible invariants

assume all objects are always closed, and that all fields
are volatile

• a: a.x >= \old(a.x)
• b: a.x < 5
• c: a.x > 10
• d: d.x == \old(d.x) || a.x == 5
• e: e.x == \old(e.x) || inv(f)
• f: e.x == 5
• g: g.x > \old(g.x)
• h: \inv(h)

is this admissible?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

} S;

.

?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

} S;

.

?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

_(invariant \this->\closed && pred ==> pred->\closed)

_(invariant \this->\closed && succ ==> succ->\closed)

} S;

.

?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

_(invariant \this->\closed && pred ==> pred->\closed)

_(invariant \this->\closed && succ ==> succ->\closed)

_(invariant \unchanged(pred) || !\old(pred) || \inv(\old(pred)))

_(invariant \unchanged(succ) || !\old(succ) || \inv(\old(succ)))

} S;

.

invariants and updates

• invariant admissibility is independent of how
the program updates the state

• admissibility depends only on the invariants of
the objects

• thus, admissibility can be checked based only
on the type definitions, without looking at the
function bodies

• in VCC, admissibility checking obeys C scoping
rules (except for textual ordering)

reading and writing

• to read data sequentially, you must prove that it is not
changing
– normally you prove this by proving it is a nonvolatile field of a

closed object

• to write data sequentially, it must be mutable (owned by
you and open)

• to read data atomically, you must prove that it is a field of a
closed object
– you prove this using invariants from objects in your sequential

domain

• to write data atomically, you must prove that it is a volatile
field of an object that is closed, and the action must be
legal

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = cnt->val;

}

.

volatile fields

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

}

atomic actions

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

int y = _(atomic_read cnt) cnt->val;

_(assert x <= y)

}

atomic actions

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

_(typedef struct O {

Counter *c;

int x;

_(invariant c->\closed && x <= c->val)

} O;)

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost O o)

_(ghost o.c = cnt)

_(ghost o.x = x)

_(wrap &o)

int y = _(atomic_read cnt) cnt->val;

_(assert \inv(&o))

_(assert x <= y)

_(unwrap &o)

}

atomic actions

implicit reduction

• the only time other threads seem to run is just
before a non-ghost atomic action

- when other threads run, you lose all
information about the state, except for the
versions of the objects you own

- because non-pure functions can engage in
atomic actions without reporting them,
function calls also lose this information

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

_(typedef struct O {

Counter *c;

int x;

_(invariant c->\closed && x <= c->val)

} O;)

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost O o)

_(ghost o.c = cnt)

_(ghost o.x = x)

_(wrap &o)

int y = _(atomic_read cnt) cnt->val;

_(assert \inv(&o))

_(assert x <= y)

_(unwrap &o)

}

this works, but is a bit verbose…

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost \claim c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

_(unwrap &o)

}

.

using claims

claims

• a \claim is a ghost object with no data, created only for its invariant
• a \claim c is characterized by

– the objects it claims
– its invariant

• the objects claimed by a claim claims must be of types marked
_(claimable)
– claimable objects keep a (ghost) count \claim_count of the number of claims

that claim it, and have an invariant that they cannot be unwrapped while this
count is nonzero

– \wrapped0(o) == \wrapped(o) && o->\claim_count == 0

• the invariant of the claim must hold at the time it is formed, and be
admissible
– the invariant includes implicitly that all of the claimed objects are closed
– this check is done inline where the claim is formed, rather than in a separate

type definition

• claims serve as first-class chunks of knowledge; they can be assigned to
variables, stored in data structures, passed in and out as parameters

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost \claim c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

_(unwrap &o)

}

.

owning the subject is a bit unrealistic…

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false))

} Counter;

void test(Counter *cnt)

_(requires cnt->\closed)

{

_(ghost \claim c = \make_claim({}, cnt->\closed))

int x = _(atomic_read c) cnt->val;

_(ghost c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

}

.

claim what you know

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt)

_(requires cnt->\closed)

{

_(ghost \claim c = \make_claim({}, cnt->\closed)) // no longer admissible

int x = _(atomic_read cnt) cnt->val;

_(ghost c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

}

.

what if the subject can go away?

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

_(ghost \claim c1 = \make_claim({c}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c1, cnt) cnt->val;

_(assert x <= y)

_(ghost \destroy_claim(c1,{c}))

}

.

passing knowledge through a
parameter

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

if (x == INT_MAX) return;

_(atomic c, cnt) {

if (cnt->val == x) cnt->val = x+1;

}

}

writing

typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

if (x == INT_MAX) return;

_(atomic c, cnt) {

cmpXchg(&cnt->val, x,x+1);

}

}

_(atomic_inline) int cmpXchg(int *loc, int cmp, int xchg)

{

if (*loc == cmp) {

*loc = xchg;

return cmp;

}

else return *loc;

}

atomic actions

• an atomic action has the form
_(atomic l) stmt

where l is a closed object list, such that
– every field read in stmt is either \thread_local or a field of an object

of l
– every field written in stmt is either writable or a volatile field of an

object of l not marked _(read_only)
– the entire atomic statement preserves the invariants of all of the

objects listed in l and not marked _(read_only)

• VCC will warn you if there is more than one access that is neither
ghost nor \thread_local, but it is up to you to make sure that
compiler treats these accesses as atomic.

• you can define _(atomic_inline) functions giving the semantics of
atomic compiler intrinsics

ghost atomic actions

_(ghost_atomic o1, o2, … {stmt})

• this is just like an ordinary atomic action,
except

– there is no scheduler boundary

– only ghost fields can be modified

last time

• admissible invariants

• using object invariants to move information
forward in time

• claims

• atomic actions

review: a lock-free set
void setNew(Set *s)

_(requires \mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !s->mem[v])

{

s->len = 0;

_(ghost s->mem = \lambda Val v; \false)

_(wrap s)

}

.

typedef struct Set {

// abstract value of the set

_(ghost volatile \bool mem[Val])

// abstract behavior of the set

_(invariant \forall Val v;

\old(mem[v]) && \this->\closed

==> mem[v])

// concrete representation

VVal data[SIZE];

volatile size_t len;

_(ghost volatile size_t idx[Val])

_(invariant len <= SIZE)

_(invariant \forall size_t i; i < len

==> mem[data[i]])

_(invariant \forall Val v; mem[v] <==>

idx[v] < len && data[idx[v]] == v)

_(invariant \old(len) <= len)

_(invariant \forall size_t i;

i < \old(len) ==> \unchanged(data[i]))

} Set;

.

review: a lock-free set
typedef struct Set {

// abstract value of the set

_(ghost volatile \bool mem[Val])

// abstract behavior of the set

_(invariant \forall Val v;

\old(mem[v]) && \this->\closed

==> mem[v])

// concrete representation

VVal data[SIZE];

volatile size_t len;

_(ghost volatile size_t idx[Val])

_(invariant len <= SIZE)

_(invariant \forall size_t i; i < len

==> mem[data[i]])

_(invariant \forall Val v; mem[v] <==>

idx[v] < len && data[idx[v]] == v)

_(invariant \old(len) <= len)

_(invariant \forall size_t i;

i < \old(len) ==> \unchanged(data[i]))

} Set;

.

BOOL setAdd(Set *s, Val v

_(ghost \claim c))

_(always c, s->\closed)

_(maintains \wrapped0(c))

_(writes c)

_(ensures \result ==> s->mem[v])

{

BOOL result;

_(atomic c,s) {

result = (s->len != SIZE);

if (result) {

s->data[s->len] = v;

_(ghost s->idx[v] = s->len)

s->len++;

_(ghost s->mem[v] = \true)

}

}

return result;

}

.

BOOL setMem(Set *s, Val v

_(ghost \claim c))

_(requires v)

_(maintains \wrapped0(c))

_(always c, s->\closed)

_(writes c)

_(ensures \result ==> s->mem[v])

_(ensures !\result ==>

!\old(s->mem[v]))

.

{

_(ghost size_t idx = s->idx[v])

_(ghost \bool isMem = s->mem[v])

_(ghost \claim cl = \make_claim({c},

s->\closed &&

(isMem ==> idx < s->len && s->data[idx] == v)))

size_t len = _(atomic_read cl,s) s->len;

_(ghost \destroy_claim(cl,{c}))

_(ghost cl = \make_claim({c},

s->\closed && len <= s->len &&

(isMem ==> idx < len && s->data[idx] == v)))

for (size_t i = 0; i < len; i++)

_(writes cl,c)

_(invariant \wrapped0(cl))

_(invariant idx < i ==> !isMem)

_(invariant \wrapped(c)

&& c->\claim_count == 1)

{

if (_(atomic_read cl,s) s->data[i] == v) {

_(ghost \destroy_claim(cl,{c}))

return TRUE;

}

}

_(ghost \destroy_claim(cl,{c}))

return FALSE;

}

exercise: break up element insertion

• use 0 as a “not yet filled” value

• maintain a ghost table of values to be filled in
(values don’t change below len)

• use a cmpXchg to increase the len field

– if it succeeds, assign to the ghost table the value
you are inserting

– use the ghost table to prove that you are not
overwriting a nonzero value in the real data array

locking

• coarse-grained locking looks a lot like sequential
programming
– a lock is just like a container
– its exclusivity comes from the exclusivity of ownership

• the only differences between reasoning with locks and
reasoning about ordinary containers are
– you have to share the container with other objects, so instead

of owning it, you have evidence that it is closed (typically a
claim)

– instead of unwrapping a container to get its contents out, you
call functions to get the contents out and put it back

• because a lock is just a container, any “real”
synchronization depends on what you do with what you
take out of the lock

typedef _(volatile_owns) struct Lock {

_(ghost \object ob)

….

} Lock

;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

;

void lockDestroy(Lock *l _(ghost \object ob))

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

;

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

;

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires \wrapped(l->ob))

_(writes l->ob)

;

// a type requiring lock protection

typedef struct S {

int x, y;

_(invariant x==y)

} S;

// a lock-protected S

typedef struct AtomicS {

Lock l;

S s;

_(invariant \mine(&l) && l.ob == &s)

} AtomicS;

// do an atomic update on s

void sOp(AtomicS *s _(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

_(unwrapping &s->s) {

s->s.x = 0;

s->s.y = 0;

}

lockRelease(&s->l _(ghost c));

}

typedef _(volatile_owns) struct Lock {

_(ghost \object ob)

….

} Lock

;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

;

void lockDestroy(Lock *l _(ghost \object ob))

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

;

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

;

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires \wrapped(l->ob))

_(writes l->ob)

;

typedef _(volatile_owns) struct Lock {

volatile BOOL locked;

_(ghost \object ob)

_(invariant locked || \mine(ob))

} Lock;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

{

l->locked = FALSE;

_(ghost l->ob = ob)

_(ghost l->\owns = {ob})

_(wrap l)

}

void lockDestroy(Lock *l)

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

{

_(unwrap l)

}

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

{

BOOL done;

do

{

_(atomic c,l) {

done = !cmpxchg(&l->locked, 0, 1);

_(ghost if (done) l->\owns -= l->ob)

}

} while (!done);

}

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires c != l->ob)

_(requires \wrapped(l->ob))

_(writes l->ob)

{

_(atomic c,l) {

l->locked = FALSE;

_(ghost l->\owns += l->ob)

}

}

lock destruction

• when destroying a lock, there is no guarantee that you will
find the protected object inside
– the last person to acquire the lock might have not bothered to

give it back

• how should this evil be detected?
– the person who used their right to use the lock shouldn’t have

been able to “give back” that right without unlocking

• solution: force lock acquirers to place a claim that the lock
is closed “on deposit” in the lock

• the lock invariant is changed so that when the lock is
locked, it owns a claim that claims it is closed

• thus, if you every open a lock, the lock invariant guarantees
you get the protected object back!

reader-writer locks

• a reader lock on an object is essentially a claim that it is closed
• since the object itself might not be claimable, you need a separate,

claimable dummy object that owns the protected object when its
claim count is nonzero

• the lock keeps a concrete volatile count that is equal to the claim
count on the dummy object

• to acquire a writer lock, check that the (concrete) claim count is
zero; if it is, take ownership of the protected object from the
dummy object

• when a reader lock is released, you need to return the claim on the
dummy object to decrease its claim count

• to prevent a reader from giving back a lesser claim, the lock
maintains the set of outstanding claims it has given out, and
requires that a thread releasing a reader lock give up one of these
claims

approval

struct S {

volatile int x;

_(ghost \object o)

_(invariant \unchanged(x) || \inv2(o))

} s;

• changes to s->x are guaranteed to not break the invariant of of s->o

• thus, s->o can freely talk about s->x

• as far as s->o can observe, s->x never changes except when “he”
changes it

• this is like s->o having a read permission on s->x

• since there are no other invariants restricting change to s->x, this is
almost like s->o owning s->x; the only difference is that s->o cannot
give away his rights to another owner without opening up s

automata

• invariants describe generalized automata
– the invariants on closing an object capture the “initial states”
– the invariants on opening an object capture the “final states”
– the invariant controlling transitions between closed states

represent the transition relation

• this means that you can take your favorite automata
models (for safety) and use them inside a program

• because VCC invariants can mention the states of other
parts of the system, you can also use these automata to
capture synchronous models like CSP and IO automata

simulation

• in most formalisms, simulation is a relation on automata
• in VCC, (forward) simulation is just an invariant
• just as function calls are spec’d in terms of the effect on abstract state, the

behavior of an object can be spec’d in terms of the behavior of its
abstraction

• usual pattern:
– abstract object is described as ghost automaton, with its state changes owner-

approved
– a concrete object owns a volatile abstract object, with a coupling invariant

relating the two
– because of the coupling invariant, some changes to the concrete state force

update of the abstract state, which requires a check of the abstraction
behavior

• the proof obligations match those of forward simulation, but the
abstraction remains available for use in other invariants

• the code looks just like our previous code for sequential programming
abstractions, except that the updates are atomic and don’t open the
object

_(typedef struct AbsClock {

volatile \natural t;

_(invariant \unchanged(t) || t == \old(t) + 1)

_(invariant \approves(\this->\owner,t))

})

typedef struct Clock {

_(ghost AbsClock val)

volatile unsigned low;

_(ghost volatile \natural high)

_(invariant \mine(&val))

_(invariant val.t == low + RADIX*high)

} Clock;

void tick(Clock *c _(ghost \claim cl))

_(always cl, c->\closed)

{

_(atomic cl,c,&c->val) {

if (c->low == UINT_MAX) {

_(ghost c->high=c->high+1)

c->low = 0;

}

else c->low++;

_(ghost c->val.t = c->val.t+1)

}

}

making locked updates appear atomic

• locks have nothing to do with atomicity; they are just a
mechanism to move ownership around

• often we use locks to implement atomic data types

• if we want to make updates to locked data to appear
atomic to other threads, we have to couple the
protected data with its abstract value
– this is the obligation of the client, and it’s type-dependent,

so it belongs in the invariant of the protected object

• the abstract value itself will remain closed, so that
clients can have claims on it

_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterNew(AtomicCounter *s)

_(requires \extent_mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

{

s->parts.impl.val = 0;

_(wrap &s->parts.impl)

_(ghost s->parts.abs.val = 0;)

_(wrap &s->parts.abs)

_(wrap &s->parts)

lockNew(&s->l _(ghost &s->parts));

_(wrap s)

}

• .

locked atomics

_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterUpdate(AtomicCounter *s

_(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

CounterParts *parts = &s->parts;

Counter *impl = &parts->impl;

_(ghost AbsCounter ^abs

= &parts->abs;)

_(unwrapping parts, impl) {

if (impl->val < INT_MAX) {

impl->val++;

_(ghost_atomic abs {

abs->val++;

_(bump_volatile_version abs)

})

}

}

lockRelease(&s->l _(ghost c));

}

• .

locked atomics

_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterUpdate(AtomicCounter *s

_(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

CounterParts *parts = &s->parts;

Counter *impl = &parts->impl;

_(ghost AbsCounter ^abs

= &parts->abs;)

_(unwrapping parts, impl) {

if (impl->val < INT_MAX) {

impl->val++;

_(ghost_atomic abs {

abs->val++;

_(bump_volatile_version abs)

})

}

}

lockRelease(&s->l _(ghost c));

}

• .

locked atomics

non-hierarchical invariants

• when operating on a large linked data structure, we often want to operate
sequentially on a small part of the structure

• this often breaks invariants on the boundry of the updated part
(admissibility usually requires that your neighbors are closed)

• the obvious solution is to unwrap the whole structure, but this requires
knowledge of all the different node types

• instead, we can add a volatile ghost Boolean to each edge in each node
indicating whether the party on the other side is potentially inconsistent
(and hence not necessarily closed)
– these ghost Booleans are approved by the graph, so that it can keep track of

which parts of the graph have to be “cleaned up”

• this lets you unwrap only those nodes you have to actually operate on,
and then clean up the marked edges (by checking the invariants of the
nodes on the boundary)

• this is a typical example of how invariants on volatile ghost field are useful
for sequential programming

linearizability

• making an operation linearizable means identifying an external point at
which the operation appears to occur
– in particular, we have to identify which operation occurs when, to avoid

attributing the same update to more than one operation

• in a concurrent setting, we can’t do this with pre/post
• instead, we use an explicit ghost operation object with a flag that is set

exactly when the operation seems to occur
– an invariant of the operation object says how the atomic object must change

state when he goes from not done to done
– the atomic object has a pointer to the “current” op, to prevent multiple ops

from simultaneously getting credit for the same update

• the use of explicit ops allows fancy effects, like one thread helping another
by pushing his atomic operation forward (to avoid blocking)

• the owner of the object can either control creation of new ops or changes
to the abstract state; each has advantages and disadvantages

polymorphism

• there are two principle ways to write polymorphic
functions/data structures in VCC

• you can take an object, making the function
polymorphic in the object type (in particular, in its
invariant)
– we used this for locks

• you can express a type as a characteristic function over
a fixed supertype, e.g. \object
– this works for all object types
– it even works for tuples of object types, e.g. if you have a

function from objects to objects, you can express its
specification as a characteristic function on pairs of objects

devices

• hardware devices (or more generally, the external
world) can be viewed as concurrent threads

• there are two ways to model the behavior of the
world

– as a program (i.e., to prove that its actions don’t break
your invariants); this is useful for devices like MMUs

– as an abstract object with a transition relation (usually
more convenient if the device doesn’t directly scribble
on your memory)

assembly code

• embedded code (e.g., hypervisors) typically have some assembly
code

• assembly instructions are treated as function calls (i.e., given
contracts or expressed with inline code)
– these registers are made of special “hybrid” memory that doesn’t have

an address but from which information is allowed to flow into real
memory

• when you enter assembly code, the registers satisfy certain
conditions specified by the platform ABI

• in practice, reasoning about most assembly code is very easy
• this simple view of assembly code works only for code that doesn’t

stomp on control flow (e.g., thread switch by switching stacks)
– handling nasty control flow within VCC is an open problem

progress

• VCC doesn’t provide a notion of global progress

• a thread can guarantee its own local progress (in
the form of termination)

• a thread cannot depend on progress from other
threads (because there is no place to express
such progress in shared object invariants)
– ex: if you put <>p in a type spec, who is responsible

for making this happen?

• a decent framework for “modular progress” is a
nice research challenge

hybrid systems

• introduce time as a ghost object with time moving forward
• the god of time keeps track of which objects in the world are “timed”; when

moving time forward, he is obliged to preserve their invariants
• timed objects specify their continuous behavior by invariants expressing what they

require when time changes (discontinuously)
– e.g., a physical quantity typically is specified to not change without time changing, and change

according to some function of the previous state when time moves forward

• a deadline is a timed object that prevents time from moving past a specified
moment

– once a deadline time is reached, time is frozen and the deadline can never be destroyed

• this allows deadlines to be used to prove safety properties of timed and hybrid
systems

• soundness of the use of deadlines depends on proving that every deadline object
is successfully destroyed

– deadlines can only be created on the stack of terminating functions!

• to prove that deadlines are not reached, you need assumptions that bound how
long it can take certain sequential pieces of code to execute

proof checking

• you can develop substantial mathematical
theories in VCC using ghost code and ghost
functions (e.g., as we did with trees)

• but VCC is not an ideal proof checking
environment

• you can transfer theories between VCC and
Isabelle via ghost types
– this allows a straightforward translation without

involving C semantics

encoding other disciplines

• many disciplines for concurrency control can be coded up using
admissible invariants and ghost data, e.g.
– ownership
– CSL
– counting permissions
– fractional permissions
– deny-guarantee
– concurrent abstract predicates

• this means that you can use these disparate mechanisms in a single
program, or even in a single function/object

• the downside is that you have to explicitly manipulate things in
ghost code, rather than depending on a fancy logic to do automatic
programming for you
– doing this in a reasonable way for ghost code might be a good project

refinement

• you can develop your code top-down,
refinement-wise in several ways

– give functions to contracts, but omit giving
implementations

– define types with their abstractions and public
invariants, but omit their concrete
implementations

– use block contracts to specify chunks of code
without having to fill in implementations

some applications of VCC to real code

• hypervisors

• OS kernel code

• efficient bignum arithmetic

• crypto code

• TPM 2.0 spec

• lock-free optimistic multiversion concurrency
control code

• lock-free resizable hash tables

conclusion

• admissible invariants and ghost code provide a
relatively simple foundation for
– programmers to write verified code
– encoding new programming disciplines

• deductive verification != proof checking
– verification = programming + automatic deduction

• the most important challenges are on the boundary of
research and engineering
– ex: more predicatable and scalable deduction

• verified programming is practical now for experts
• verified programming is on the cusp of being practical

for ordinary programmers

last bits

• if you tried to use VCC and gave up (or didn’t), I’d like
to hear about why. Feel free to send email (perhaps
anonymously) to ernie.cohen@microsoft.com.
(particularly sought is feedback from people who used
both VCC and Dafny.)

• if you are going to FM in Paris, let me know if you want
to be on a VCC team for the verified programming
competition

• if you are interested in verified software, keep an eye
out for announcements for VSTTE 2013 (late May, in
California)

• thank you!

mailto:ernie.cohen@microsoft.com

thanks

• Michal Moskal and Stephan Tobies (the primary
developers of VCC); Wolfram Schulte also helped
with the early development

• Wolfgang Paul and the Verisoft 2 team: Mark
Hillebrand, Norbert Schirmer, Eyad Alkassar,
Vladimir Boyarinov, Ulan Degenbaev, Bruno
Langenstein, Dirk Leinenbach, Hristo Pentchev,
Elena Petrova, Sabine Schmaltz, Andrey Shadrin,
Alexandra Tsyban, Sergey Tverdyshev

• Thomas Santen and Markus Dahlweid from MSR
ATLE

