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Product Line Engineering (PLE)

Paradigm
To develop a family of products using a common platform and mass
customization

Aim
To lower production costs of the individual products by

letting them share an overall reference model of the product family
allowing them to differ w.r.t. particular characteristics to serve, e.g.,
different markets

Production process
Organized so as to maximize commonalities of the products and at the
same time minimize the cost of variations
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Variability in PLE

Feature modelling
Provide compact representations of all the products of a product family
in terms of their features Feature Models (FM) are used to model sets
of software systems in terms of features and relations among them . A
feature can be defined as an increment in product functionality.

Variability modelling
FMs are commonly used as a compact representation of all the
products of an SPL in terms of features. A FM is visually represented
as a tree-like structure in which nodes represent features, and
connections illustrate the relationships between them.
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Feature diagrams

Feature models
Feature models are a special type of information model widely used in
software product line engineering. A feature model is represented as a
hierarchically arranged set of features composed by:

Relationships between a parent (or compound) feature and its
child features (or subfeatures).
Cross-tree (or cross-hierarchy) constraints that are typically
inclusion or exclusion statements in the form: if feature F is
included, then features A and B must also be included (or
excluded).
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Feature diagrams

A family of popular modeling languages used for engineering
requirements in SPL

Represented as the nodes of a tree, with the product family being
the root and have the following features:

How to explicitly define the features or components of a product family
that are optional, alternative, mandatory,or or-Relation

optional features may be present in a product only if their parent is
present

mandatory features are present in a product if and only if their parent is
present

alternative features are a set of features among which one and only one is
present in a product if their parent is present

or one or more of a set of features can be included in the products
if their parent is present
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Feature models

With additional inter-feature constraints a feature diagram results
in a feature model:

requires is a unidirectional relation between two features indicating
that the presence of one feature requires the presence of
the other

excludes is a bidirectional relation between two features indicating
that the presence of either feature is incompatible with the
presence of the other

FeatureModels were first introduced as a part of the Feature-Oriented
Domain Analysis method (FODA) by Kang back in 1990
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Running example: Coffee machine family

The only accepted coins are the 1 euro (1e), exclusively for the
European products and the 1 dollar (1$), exclusively for the
Canadian products: 1e and 1$ are exclusive (alternative)
features
The choice of beverage (coffee, tea, cappuccino) varies, but
coffee must be offered by all products of the family, while
cappuccino may be offered solely by European products:
excludes relation between features
The user has to choose whether or not (s)he wants sugar, by
pressing one of two buttons, after which (s)he may select a
beverage.
Optionally, a ringtone may be rung after delivering a beverage .
However, a ringtone must be present in all products offering
cappuccino: requires relation between features.

S. Gnesi (ISTI-CNR) Families of dependable systems: A model checking approach 7 / 79



Running example: Coffee machine family

Feature model:

Figure: Feature model of the family of coffee machines (with shorthand
names)
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Running example: Coffee machine family

This family consists of the following 10 products (coffee machines
defined by their features):

{{m,o,b, c, e},{m, s,o,b, c, e, r},{m,o,b, c, e, t},
{m,o,b, c, e, t , r}, {m,o,b, c, e,p, r},
{m,o,b, c, $}, {m,o,b, c, $, r}, {m,o,b, c, $, t},
{m,o,b, c, $, t , r}, {m,o,b, c, e,p, r , t}}
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Managing variability formally

Show that a certain product belongs to a product family or, instead,
derive a product from a family by means of a proper selection of the
features or components

A feature model can be characterized by a propositional logic formula:

(m⇐⇒ true)∧(o⇐⇒m)∧((e⇐⇒ (¬$∧o))∧($⇐⇒ (¬ e∧o)))∧(r =⇒m)

∧(b⇐⇒m)∧((p =⇒ b)∧(c⇐⇒ b)∧(t =⇒ b))∧(p =⇒ r)∧(¬($∧p))

Suppose we have defined two coffee machines with the following sets
of features:

CM1 = {m,o,b, c, e} and CM2 = {m,o,b, c, e,p}
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S.P.L.O.T.: Software Product Lines Online Tools

S.P.L.O.T.: http://www.splot-research.org
Generative Software Development Lab / Computer Systems Group,
University of Waterloo, Canada, 2009-2010.

Online Feature Model Editor
Automated Analysis
Feature-based Interactive Configuration
Feature Models Repository
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A real system: Communication Based Train Control

Static requirements of CBTC

A CBTC system shall include an ATP (Automatic Train Protection)
system and an ATS (Automatic Train Supervision) system. The ATS
system may be of two types: ATS Simple, and ATS Router.

An IXL system may include an interlocking (IXL) system, which can be
either an IXL Pure or an IXL Controllable.

The ATP system shall be composed of an ATP Onboard system and an
ATP Wayside system. The former is placed on board of every train. The
latter is placed along the line.

The ATP Wayside system can be of three types: ATP Wayside IXL, if it
embeds an IXL; ATP Wayside Controller, which requires an IXL
Controllable; ATP Wayside Simple, which requires an IXL Pure and an
ATS Router to work properly.

An ATP IXL does not exclude the usage of an additional independent
IXL, normally employed for redundancy.
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A real system: Communication Based Train Control
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Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are exclusive (alternative) features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken
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Deontic logic

Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition
Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features
Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

⇒ Deontic logic seems to be a natural candidate for expressing
the conformance of products with respect to variability rules
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Deontic logic – continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (¬), conjunction (∧), disjunction (∨) and implication (=⇒),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

Informal meaning of the deontic operators
O(a): action a is obligatory
P(a) = ¬O(¬a): action a is permitted

if and only if its negation is not obligatory
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Construction of deontic characterization of FM

• If A is a feature and A1 and A2 are subfeatures, add the formula:

A =⇒ Φ(A1,A2), where Φ(A1,A2) is defined as:

Φ(A1,A2) = (O(A1) ∨O(A2)) ∧ ¬(P(A1) ∧ P(A2)) if A1, A2 alternative,
and otherwise:
Φ(A1,A2) = φ(A1) ∧ φ(A2), in which Ai , for i ∈ {1,2}, is defined as:

φ(Ai) =

{
P(Ai) if Ai is optional
O(Ai) if Ai is mandatory

• If A requires B, add the formula A =⇒ O(B)

• If A excludes B, add the formula (A =⇒ ¬P(B)) ∧ (B =⇒ ¬P(A))

S. Gnesi (ISTI-CNR) Families of dependable systems: A model checking approach 17 / 79



Expressing feature models with deontic logic

Characteristic formula of Coffee machine family

O(Coin) ∧O(Beverage) ∧ P(Ringtone)

∧
Coin =⇒ (O(1$) ∨O(1e)) ∧ ¬(P(1$) ∧ P(1e))

Beverage =⇒ O(Coffee) ∧ P(Tea) ∧ P(Cappuccino)

∧
Cappuccino =⇒ O(Ringtone)

(1$ =⇒ ¬P(Cappuccino)) ∧ (Cappuccino =⇒ ¬P(1$))

Two example coffee machines

CM1 = {Coin,1e,Beverage,Coffee}
CM2 = {Coin,1e,Beverage,Coffee,Cappuccino}

CM1 in family, but CM2 not: Cappuccino =⇒ O(Ringtone) false
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Running example: Coffee machine family-SPLOT
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A real system: Communication Based Train Control

Static requirements of CBTC

A CBTC system shall include an ATP (Automatic Train Protection)
system and an ATS (Automatic Train Supervision) system. The ATS
system may be of two types: ATS Simple, and ATS Router.

An IXL system may include an interlocking (IXL) system, which can be
either an IXL Pure or an IXL Controllable.

The ATP system shall be composed of an ATP Onboard system and an
ATP Wayside system. The former is placed on board of every train. The
latter is placed along the line.

The ATP Wayside system can be of three types: ATP Wayside IXL, if it
embeds an IXL; ATP Wayside Controller, which requires an IXL
Controllable; ATP Wayside Simple, which requires an IXL Pure and an
ATS Router to work properly.

An ATP IXL does not exclude the usage of an additional independent
IXL, normally employed for redundancy.
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A real system: Communication Based Train Control
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Behavioural modelling

We are now interested to the dynamic behaviour: giving a
behavioural model of a family of products requires the ability to
say which behavioural elements (states, transitions, actions,
messages,...) are required in a product and which are optional.
Common solution: annotating behavioural descriptions of the
family with aside notations that describe variation points, and
which parts of the behaviour are variable, that is, are optional or
required for the different products of a family. (e.g. annotated UML
state diagrams or sequence diagrams).
Such annotations often lack a formal definition⇒ no uniform
framework in which to reason formally on families .

. . . our final aim is to be able to apply formal verification techniques to
a family definition, so that what is proved for a family is consequently
proved for a product of a family
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First product of the family: an audible coffee and
cappuccino machine for the European market
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Second product of the family: A silent tea and coffee
machine for the Canadian market
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LTS - based formalisms

Quest for an expressive modelling formalism for families based on the
choice of a fundamental model, equipped with formal tools to reason
over formal specifications. Labeled Transition Systems (LTS) are one
of the most common formal frameworks for modeling and reasoning
over the behaviour of a system.

Definition
A Labeled Transition System (LTS) is a quadruple: (S,Act , s0,−→),
where S is a set of states, Act is a set of actions used as transition
labels, s0 ∈ S is the initial state, and −→⊆ S × Act × S is the transition
relation. If (s, t , s′) ∈−→, we write s t−→ s′.
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LTS model of the EU product
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LTS model of the Canadian product
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Attempt to model the family with a LTS
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Deriving a product from a family

Given a LTS T , visit the graph of T in a breadth-first fashion, applying at each state s the step
visit(s), as defined below:
visit(s):

select-transitions(s); USER SELECTION
while( removable transitions exist )

{ if a transition t is removable:
remove t from the graph
if the state s’, target of the transition t,
is no more reachable by any other state:

remove the state s’;
mark all its outgoing transitions
as "removable";

}

select-transitions(s):
request to the user, for each outgoing transition t from s, to tell whether he/she considers the
transition t present in the derived product. If not, the transition is marked as removable.
The choice needs to be guided by the family requirements, but this is not enforced by the
algorithm, since no knowledge about variation points is embedded in the model.
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Simulation relation

Any LTS associated to a product derived by the previous algorithm has
a simulation relation with the LTS representing the family.

Definition
Let T1 = (S1,Act , s01 ,−→1) and T2 = (S2,Act , s01 ,−→2) We say that
s2 ∈ S2 simulates s1 ∈ S1 (written s1 �s s2) if there exists a strong
simulation that relates s1 and s2.
R ⊆ S1 × S2 is a strong simulation if ∀(s1, s2) ∈ R (where
σ ∈ T1 ∪ T2),

s1
σ−→1 s′1 implies ∃s′2 : s2

σ→2 s′2 and (s′1, s
′
2) ∈ R.

The above definition is naturally extended to LTSs by considering their
initial states: A LTS T2 simulates T1 (written T1 �s T2) iff (s01 �s s01)

The family LTS simulates the product LTS
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Inadequacy of the LTS modeling of a family

In the coffee machine example,
a product that accepts both euro and dollar coins,
or a product that does not allow a user to ask for sugar,

can both be derived by the previous algorithm.

It is easy to notice that these products do not satisfy the given family
requirements
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Modal Transition Systems (MTS)

Modal Transition Systems (MTS)
[K. Larsen and B. Thomsen, A Modal Process Logic. LICS88]
have been proposed to capture variability:
[D. Fischbein, S. Uchitel, Sebastian, V. Braberman, A Foundation for
Behavioural Conformance in Software Product Line Architectures, 2nd
ROSATEA Workshop, 2006]
In a MTS, transitions may be possible or required, that is, optional or
mandatory for a product.

Definition
A MTS F = (S,Act , s0,→�,→�) is defined as a LTS, having two
distinct transition relations, namely→�⊆ SF × Act × SF is the must
transition relation, which expresses required transitions,
→�⊆ SF × Act × SF is the may transition relation, which expresses
possible transitions.
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Model of a family as a MTS
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Conformance relation

The “is a product of F ” relation below, called also “conformance”
relation, links a MTS representing a family with a LTS representing a
product.

Definition
We say that P is a product of F , written P|− F , if and only if p0|− s0,
where:
p|− f if and only if

f a−→� f ′ =⇒ ∃p′ ∈ SP : p a−→ p′ and p′|− f ′

p a−→ p′ =⇒ ∃f ′ ∈ SF : f a−→� f ′ and p′|− f ′

The conformance relation implies simulation.
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Inadequacy of the MTS modeling of a family

Considering our example, it is again possible to derive products that do
not satisfy the requirements:

A product that accepts both euro and dollar coins can be derived.

This is because MTSs are not completely adequate to model the case
of alternative variabiliy (i.e. the mandatory selection of at least one
among several different choices).
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Inadequacy of the MTS modeling of a family -Cont.

Again the following LTS ( product) may be derived:
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Introduction of EMTS

Definition
An Extended Modal Transition System (EMTS) is a quintuple
(S,Act , s0,�, �), where S is a set of states, Act is a set of actions,
s0 ∈ S is the initial state, � ⊆ S × 2Act×S is the at least 1-of-n transition
relation, and � ⊆ S × 2Act×S is the at most 1-of-n transition relation.

We write respectively:
s

a1,a2,...,an−−−−−−→� s1, s2 . . . , sn and
s

a1,a2,...,an−−−−−−→� s1, s2 . . . , sn
to denote elements of the two relations:
in the first case any product of the family should have at least one of
the n transitions s ai−→ si ,
in the second case any product of the family should have at most 1 of
the n transitions (that is, it can also have no transition from this set).
the number of the actions on the arrow must coincide with that of target states, and
order counts as well, since each action is paired to the corresponding state
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Example EMTSs

(a) (b) "exactly one"
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Modelling a family with an EMTS 1

1to avoid notation overloading modality symbols are not drawn for compulsory
transitions (at least 1 of 1)

S. Gnesi (ISTI-CNR) Families of dependable systems: A model checking approach 39 / 79



Modelling a family with an EMTS 2

2to avoid notation overloading modality symbols are not drawn for compulsory
transitions (at least 1 of 1)
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Generating product from an EMTS

The above LTS with gives the choice between Dollar and Euro may not
be derived now.
The two LTSs representing the Canadian and the European machine
are instead correctly derived.
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Inadequacy to model multiple optionality

A more general notion is actually needed if we want to model multiple
optionality, that is, the fact that a product may have (at least, at most,
exactly) k of the n choices proposed by the family.

Examples of multiple optionality:

energy consumption or budget considerations may give an upper
bound to the number of provided features, while marketing strategies
may suggest a lower bound, under which the product looses its market.

Upper and lower bounds may be used to define subfamilies on the
basis of such non functional aspects.
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Generalized EMTS

Definition
A Generalized Extended Modal Transition System (GEMTS) is a
quintuple (S,Act , s0,�, �), where S is a set of states, Act is a set of
actions, s0 ∈ S is the initial state, � ⊆ S × 2Act×S × N is the at least k
-of- n transition relation, and � ⊆ S × 2Act×S × N is the at most k -of- n
transition relation.

We write respectively:
s a1,a2,...,an−−−−−−→�k s1, s2 . . . , sn and
s a1,a2,...,an−−−−−−→�k s1, s2 . . . , sn
to denote elements of the two relations:
in the first case any product of the family should have at least k of the n
transitions s ai−→ si ,
in the second case any product of the family should have at most k of the n
transitions (that is, it can also have no transition from this set).

the number of the actions on the arrow must coincide with that of target states, and order counts
as well, since each action is paired to the corresponding state.
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An example of GEMTS

Possible transitions sets:
{c,d}{c,d ,e}{a, c,d}{b, c,d}{c,e}{a, c,e}{b, c,e}
{a,b, c,e}{d ,e}{a,d ,e}{b,d ,e}{a,b,d ,e}{a, c,d ,e}{b, c,d ,e}
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Conformance relation

A GEMTS defines a family of LTSs according to the following definition:

Definition
A LTS P = (SP ,Act ,−→,p0) belongs to the family (GEMTS)
F = (SF ,Act , f0,�, �) (we say also P is a product of F, or P conforms
to F, written P|− F ) if and only if p0|− f0, where:
p|− f if and only if

f
a1,a2,...,an−−−−−−→�k f1, f2 . . . , fn =⇒ ∃I ⊆ {1, . . . ,n},1 ≤ |I| ≤ k : ∀i ∈

I,p ai−→ pi and pi |− fi

f
a1,a2,...,an−−−−−−→�k f1, f2 . . . , sn =⇒ 6 ∃I ⊆ {1, . . . ,n}, k < |I| ≤ n : ∀i ∈

I,p ai−→ pi and pi |− fi
p a−→ p′ =⇒ ∃k ,A ⊆ Act ,S ⊆ SF , f ′ ∈ SF : (a, f ′) ∈
A× SF , (f ,A× S, k) ∈ � or (f ,A× S, k) ∈ �, and p′|− f ′

S. Gnesi (ISTI-CNR) Families of dependable systems: A model checking approach 45 / 79



Derivation of products

the select-transitions(s) procedure constrains the selection of the
user by enforcing him/her to respect the at least k-of-n and at most
k-of-n relations applicable on the transitions outgoing from state s.
Hence, the set of products derivable are, again, a subset of those
derivable by the family LTS
Therefore, any derivable product is still simulated by the LTS
family.
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Modelling a family with a GEMTS
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Modelling a family with a GEMTS
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Relations with other models

Other variants of LTSs/MTSs were proposed for family modeling:

1-selecting MTSs (1-MTS):
H. Schmidt, H. Fecher, Comparing Disjunctive Modal Transition Systems
with an One-Selecting Variant, NWPT’06

which are a variant of Disjunctive Modal Transition Systems (DMTS)
K.G. Larsen, L. Xinxin, Equation solving using modal transition systems,
LICS 1990

Meaning of modalities

modality MTS DMTS 1-MTS EMTS GEMTS
� (may) at most 1-of-1 at most n-of-n at most 1-of-n at most 1-of-n at most k-of-n
� (must) at least 1-of-1 at least 1-of-n exactly 1-of-n at least 1-of-n at least k-of-n

GEMTSs show the greater generality
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MTS and Constraints

Constraints :
euro ALT dollar
cappuccino REQ ring-a-tone
dollar EXC cappuccino
ring-a-tone ALT no-ring

The idea will be to prune optional (may) transitions in the MTS in a
counterexample-guided way, i.e. based on model-checking techniques
to derive from MTSs correct products.S. Gnesi (ISTI-CNR) Families of dependable systems: A model checking approach 50 / 79



FTS - Featured Transition Systems

Definition (FTS)
A Featured Transition System (FTS) is a 9-tuple
(Q,A,q,δ,AP,L,FD,γ,>), with underlying L2TS (Q,A,q,δ,AP,L), feature
diagram FD over a set F of features, total function γ : δ → F labelling
transitions with features, and partial order >⊆ δ × δ defining an
ordering among transitions.

A transition of an FTS is thus labelled with an action and a feature and
multiple outgoing transitions may be ordered.

[Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model checking lots

of systems: Efficient verification of temporal properties in software product lines. ICSE

2010. ACM, New York (2010)]
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FTS
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FTS

Figure: FTS modelling the family of coffee machines.
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FTS and MTS

Definition (FTS product derivation)
Given an FTS F = (Q,A,q, δ,AP,L,FD, γ,>) that specifies a family, a
set of products specified as a set of L2TSs
{Pp = (Qp,Ap,q, δp,APp,Lp) | p ⊆ 2F } may be derived by considering
each transition relation δp to be obtained from δ by pruning (i) all
transitions labelled with features not in p and (ii) all transitions
overriden by transitions preceding them in the partial order.
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Product derivation: MTS versus FTS

FTS All and only products that are correct w.r.t. the requirements
are derived (price: include a feature diagram in each FTS)

MTS Also correctly derived products may violate constraints of
the type that MTSs cannot model (cf. LTS on next slide)
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A correct but not valid product LTS of MTS
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Action-and State-based Logics

Model checking primarily evolved over Kripke structures
Information associated to states (e.g. SMV, NuSMV, etc.)

Theory of concurrency evolved over Labelled Transition Systems
Information associated to transitions (CCS, LOTOS, π-calculus, etc.)
Many aspects of software (in particular the most interesting ones for
reactive, concurrent and distributed software) are events, i.e. actions

Ease of expressiveness w.r.t. pure action- or state-based logics
Effective gain depends on specific system under scrutiny
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HML and Action-based logics

HML is a branching time temporal logic interpreted over LTSs.

Definition

φ ::= tt | ¬φ | φ ∧ φ′ | [α]φ | 〈α〉φ | Eπ | Aπ

where the informal meaning of the above operators is:
[a]φ: for all next states reachable with a, φ holds;
〈α〉φ: a next state exits reachable with a where φ holds;
E π: there exists a path on which π holds;
Aπ: on each of the possible paths π holds;
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LTS model of the Canadian product

The following properties may be checked over it:
[1$ ] < sugar >< coffee > true ——–> TRUE
< 1$ < sugar >< coffee > true ——–> TRUE
< 1$ << coffee > true ——–> FALSE
[sugar] <coffee>true ——–> ????
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Definition of HML + UNTIL

HML has a too low expressive power to express interesting properties
like Safety and liveness properties the following extension was defined:

Definition

φ ::= tt | ¬φ | φ ∧ φ′ | [α]φ | 〈α〉φ | Eπ | Aπ
π ::= φ U φ′

where the informal meaning of the above operators is:
[a]φ: for all next states reachable with a, φ holds;
〈α〉φ: a next state exits reachable with a where φ holds;
E π: there exists a path on which π holds;
Aπ: on each of the possible paths π holds;
φ U φ′: in the current or a future state φ′ holds, while φ holds until
that state (but not necessarily in that state).
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Definition of MHML

Variability and action-based branching-time temporal logic
A temporal logic based on the “Hennessy-Milner logic with until”, but
augmented with deontic O (obligatory ) and P (permitted) operators,
CTL’s path operators E and A and ACTL’s action-based Until operator,
both with and without a deontic interpretation

Syntax of MHML
φ ::= true | ¬φ | φ ∧ φ′ | 〈a〉φ | [a]φ | 〈a〉� φ | [a]� φ | E π | Aπ
π ::= φ {ϕ}U {ϕ′} φ′ | φ {ϕ}U� {ϕ′} φ′

Thus defines state formulae φ, path formulae π and action formulae ϕ
(boolean compositions of actions) over set of atomic actions {a,b, . . .}

〈a〉� and [a]� represent the classic deontic modalities O and P, resp.
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Informal semantics of MHML

The intuitive interpretation of the nonstandard operators is:
〈a〉φ: a next state exists, reachable by a must transition executing
action a, in which φ holds
[a]φ: in all next states, reachable by a may or must transition
executing action a, φ holds
E π: there exists a full path on which π holds
Aπ: on all possible full paths, π holds
φ {ϕ}U {ϕ′} φ′: in a future state reached by an action satisfying
ϕ′, φ′ holds, while φ holds from the current state until that state is
reached and all actions executed in the meanwhile along the path
satisfy ϕ
φ {ϕ}U� {ϕ′} φ′: in a future state reached by an action satisfying
ϕ′, φ′ holds, while φ holds from the current state until that state is
reached and the path leading to that state is a must path such that
all actions executed in the meanwhile along the path satisfy ϕ
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MHML : Semantics over MTS

To give the semantics of MHML the notion of path and must path
should be given:

Definition
Let (Q,A,q,−→�,−→♦) be an MTS and let σ = q1a1q2a2q3 · · · be a full
path in its underlying LTS. Then σ is a must path (from q1) if
qi

ai−→� qi+1, for all i > 0, in the MTS.
The set of all must paths from q1 is denoted by �-path (q1). A must
path σ is denoted by σ�.
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MHML : Semantics over MTS
q |= true always holds

q |= ¬φ iff not q |= φ

q |= φ ∧ φ′ iff q |= φ and q |= φ′

q |= 〈a〉φ iff ∃ q′ ∈ Q such that q a−→♦ q′, and q′ |= φ

q |= [a]φ iff ∀ q′ ∈ Q such that q a−→♦ q′, we have q′ |= φ

q |= 〈a〉� φ iff ∃ q′ ∈ Q such that q a−→� q′, and q′ |= φ

q |= [a]� φ iff ∀ q′ ∈ Q such that q a−→� q′, we have q′ |= φ

q |= E π iff ∃σ′ ∈ path(q) such that σ′ |= π

q |= Aπ iff ∀σ′ ∈ path(q) such that σ′ |= π

σ |= φ {ϕ}U {ϕ′} φ′ iff ∃ j ≥ 1 : σ(j) |= φ′, σ{j} |= ϕ′, and σ(j + 1) |= φ′,
and ∀1 ≤ i < j : σ(i) |= φ and σ{i} |= ϕ

σ |= φ {ϕ}U� {ϕ′} φ′ iff σ is a must path σ� and σ� |= φ {ϕ}U {ϕ′} φ′

Abbreviations: EFφ = E(true {true}U {true} φ); EF�φ = E(true {true}U� {true}φ);
EF {ϕ} true = E(true {true}U {ϕ} true); EF�{ϕ} true = E(true {true}U� {ϕ} true);
AG φ = ¬EF ¬φ; AG� φ = ¬EF� ¬φ; etc.
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Advanced variability management

MHML can complement behavioral description of MTS by expressing
constraints over possible products of a family that MTS cannot model

Template ALT: Features F1 and F2 are alternative
(EF� {F1} true ∨ EF� {F2} true) ∧ ¬(EF {F1} true ∧ EF {F2} true)

Template EXC: Feature F1 excludes feature F2
((EF {F1} true)=⇒(AG¬〈F2〉 true))∧((EF {F2} true)=⇒(AG¬〈F1〉 true))

Template REQ: Feature F1 requires feature F2
(EF {F1} true) =⇒ (EF� {F2} true)

Define no full temporal ordering among the related features
Duty of behavioral LTS/MTS model, to be verified by MHML formulae
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Model checking families and products

Verify property expressed as logical formula ψ over model T
Decide whether T |= ψ, where |= is the logic’s satisfaction relation
If T 6|= ψ, then it is usually easy to generate a counterexample
If T is finite, model checking thus reduces to a graph search

On the fly: Only a fragment of the overall state space might need to be
generated and analysed to be able to produce the correct result.
Model checking MHML formulae over MTSs can be achieved in a
complexity that is linear w.r.t. the state space size.
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Model checking temporal orderings

Property D: Always once a coffee has been selected, a coffee is
eventually delivered

AG [coffee] AF� {pour coffee} true

Property E: A coffee machine may never deliver a coffee before
a coin has been inserted

A [true {¬pour coffee}U� {1$ ∨ 1e} true]

Property MTS family European Canadian LTS product
A: ALT false true true false
B: EXC false true true false
C: REQ false true true true
D true true true true
E true true true true
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Preservation of validity from families to products

A sufficient condition for the preservation of MHML properties from a
product family to its products is that these properties can be expressed
as formulae in the fragment MHML� of MHML:

Definition
φ ::= true | φ ∧ φ′ | φ ∨ φ′ | 〈a〉φ | [a]φ | EF� {ϕ} | AF� {ϕ} |

E(φ {ϕ}U� {ϕ}φ′) |A(φ {ϕ}U� {ϕ}φ′) |EG�φ |AG�φ |AGφ

A formula of the form [a]φ is a universal formula which is preserved on
the same basis as that of the classical result of preservation by
simulation for CTL.
A formula of the form 〈a〉φ is preserved as it dictates the existence of a
must path with certain characteristics will necessarily be found in all
products.
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Derivation of products

The underlying idea is to construct intermediate LTSs (partially
covering the original MTS to a given depth) in a step-by-step fashion
as follows.

First unfold the initial MTS according to the type of transitions,
meanwhile verifying formulae of type ALT and EXC, and continue
only with the LTSs satisfying all formulae.
In the end, when no more unfolding step can be applied to the
LTSs, verify formulae of type REQ and (partially) ALT over these
LTSs.
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A first unfolding based on its type of transitions results in:

• • 1e←− • • 1$−→ • • 1e←− • 1$−→ •
(i) (ii) (iii) (iv)

Next, the algorithm would consider the relevant MHML formula of type
ALT (Property A: 1e and 1$ are alternative):

(EF 〈1$〉 true ∨ EF 〈1e〉 true) ∧
¬(EF P(1$) true ∧ EF P(1e) true)

Verifying this formula over the above intermediate LTSs implies that
the algorithm would only continue to unfold the original MTS from the
leaf states of the above intermediate LTSs (ii) and (iii) onwards. The
final result of the algorithm would thus be a set of valid products, the
behaviour of each guaranteeing that initially only a 1e or a 1$ can be
inserted.
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VMC

VMC: http://fmtlab.isti.cnr.it/vmc/
An on-the-fly model-checker for VACTL is defined as particularization
of the FMC model checker for ACTL over a CCS-like input language

Recently implemented also our algorithm for product derivation
Explore and verify product families (MTS)
Generate all valid products, explore and verify products (LTS)
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VMC: Variability Model Checker

VMC can be used to automatically derive, from an MTS description of
a product family and an associated set of MHMLformulae expressing
further constraints for this family, all its valid products (i.e. a set of LTS
descriptions of products, each one correct w.r.t. all constraints)

VMC can also be used to experiment with products to verify further
(temporal) constraints, etc.
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MTS specification of coffee machine family in VMC
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Result of ‘a coffee machine always eventually rings a tone’
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Exercise: Family of CBTC Behavioral Requirements

Describe the family MTS and then use the constraints to generate the
products:

The ATS (Simple or Router) is in charge of dispatching trains from one station to another.

An ATS Router interacts with an IXL Pure to require a root for the train that has to be dispatched.
The IXL Pure monitors the status of the railway yard, and, when routing is required by the ATS Router, allows or denies
the routing of the train in accordance with the railway regulations. If routing is allowed, the ATS Router sends a command
to the ATP Wayside Simple, to authorize train movement.
The ATP Wayside Simple interacts with the ATP Onboard to send an authorization of movement. The ATP Onboard is in
charge of controlling the safe movement of the train, and brakes the train in case of dangerous operations acted by the
driver.

An ATS Simple interacts with an ATP Wayside IXL or with an ATP Wayside Controller to require a root for the train that
has to be dispatched.
The ATP Wayside IXL performs the same operations of the IXL pure (i.e., allows/denies routing).

The ATP Wayside Controller interacts with an IXL Controllable. The ATP Wayside Controller is able to bypass some
operations of the IXL Controllable, which, unlike the IXL Pure, allows the ATP Wayside Controller to bypass some of its
controls to achieve improved performances.
Both the ATP Wayside IXL and the ATP Wayside Controller implement all the operations of the ATP Wayside Simple (i.e.,
sending the authorization of movement to the ATP Onboard).
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Conclusions and future work

We have illustrated how to derive valid products from a product
family by managing variability in a single logical framework
consisting of an MTS and an associated set of MHML formulae.
We have used the same framework to verify behavioural
properties over products and families.

Several issues deserve further investigation:

A major issue is the definition of design and verification
techniques and tools that, based on the principles expressed in
this paper, but hiding most of the formality, can be routinely used
by product line engineers.
Furthemore a thorough investigation of the relation between
features and actions when translating feature models into
transition systems.
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