
Risk-Driven Engineering of Requirements
for Dependable Systems

Axel van Lamsweerde
University of Louvain

B-1348 Louvain-la-Neuve (Belgium)

Marktoberdorf Summer School
August 2012

Requirements engineering (RE), roughly ...

u  Identify & analyze problems with an existing system
 (system-as-is),

u  Identify & evaluate objectives, opportunities, options for new
system (system-to-be),

u  Identify & define functionalities of, constraints on,
responsibilities in system-to-be,

u  Specify & organize all of these in a requirements document to
be maintained throughout system development & evolution

System = software + environment
 (people, devices, existing software)	

Example:
transportation between airport terminals

u  Problem (system-as-is):
–  passengers frequently missing flight connections among

terminals; slow & inconvenient bus transportation
–  number of passengers increasing regularly

u  Objectives, options (system-to-be):
–  support high-frequency trains between terminals
–  with or without train drivers ?

u  Functionalities, constraints:
–  software-based control of train accelerations, of doors

opening etc. to achieve prompt and safe transportation

u  RE deliverable: requirements document for system-to-be

The scope of RE is broad

u  Composite system: software-to-be + environment

u  Multiple system versions: as-is, to-be, to-be-next

u  Multiple options (evaluation, selection)

u  Multiple stakeholders to be involved

u  Multiple dimensions: WHY, WHAT, WHO

The scope of RE: WHY, WHAT, WHO

system objectives WHY ?"

WHAT ?

WHO ?"

operationalization

responsibility!
assignment!

requirements,"
assumptions"

domain
knowledge

RE is hard:
multiple transitions to handle

u  Informal problem world → formal machine world

u  High-level, strategic → low-level, technical

u  Imprecise, unstructured → precise, structured

RE is hard:
difficult transitions to handle

u  Informal problem world → formal machine world

u  High-level, strategic → low-level, technical

u  Imprecise, unstructured → precise, structured

u  Implicit, hidden → explicit, adequate

u  Conflicting → consistent

u  Partial → sufficiently complete

u  Intended, ideal → unexpected, realistic
 (hazards, threats)

RE is critical

u  Major cause of software failure

Requirements-related errors are the most
 numerous, persistent, expensive, dangerous

u  Severe consequences
accidents, environmental degradations
cost overruns, delivery delays, dissatisfaction

u  Multiple impact
legal, social, economical, technical

u  Certification issues

Requirements completeness �
is a major challenge�

u  Missing requirements = major cause of software failure

u  Often result from poor risk analysis

Ø  lack of anticipation of what could go wrong

 => over-ideal system,
 no requirements on handling adverse events

Risks must be anticipated at RE time

u  Risk = uncertain factor whose occurrence may result in loss
of satisfaction of a corresponding objective
e.g. a passenger forcing doors opening while train moving
 a meeting participant not checking email regularly

u  A risk has...
–  a likelihood of occurrence,
–  one or more undesirable consequences
e.g. passengers falling out of train moving with doors open

u  Each risk consequence has ...

–  a likelihood of occurrence if the risk occurs
–  a severity: degree of loss of satisfaction of objective

Risk management at RE time

Risk
identification

Risk
assessment

Risk
control

what system-specific risks?

likely?
severe, likely consequences?

countermeasures as
new requirements

Course outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model items
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

Models are interface among RE tasks

domain understanding
& elicitation	

evaluation	

& agreement

 alternative proposals	

agreed
requirements

documented requirements

consolidated	

requirements

specification	

& documentation	

validation	

& verification	

Model-based RE

u  To focus on key aspects

u  To support early analysis & fix of critical errors

u  To support explanation to stakeholders

u  To support decisions among multiple options

Model building at RE time
should be goal-oriented

To enable ...
u  satisfaction arguments Specs, Assumptions |- Goal

u  completeness & pertinence of the model

u  early, incremental analysis

u  model refinement & synthesis (deductive, inductive)

u  reasoning about alternative options

u  validation by stakeholders

u  backward traceability

u  generation of …
–  requirements document
–  architectural fragments
–  runtime reqirements monitors

Declarative abstractions
for system modeling at RE time

u  Goal
–  prescriptive statement of intent about system

"Trains shall stop at stop signals"

u  Domain property
–  descriptive statement about environment

"Train doors are either open or closed"

u  Both used for model building
–  Goals may be refined, negotiated, weakened, prioritized ...

unlike domain properties

Goals are formulated at
different levels of abstraction

u  Higher-level goals

strategic, coarse-grained

"50% increase of transportation capacity”

u  Lower-level goals
technical, fine-grained

 ”Acceleration command sent every 3 secs"

 Goal satisfaction requires agent cooperation

u  Agent: active component, controls behaviors
 software-to-be, device, human role, existing sw

TrainController, Passenger, SpeedSensor, TrackingSystem

 The more fine-grained a goal,
 the fewer agents required for its satisfaction

 SafeTransportation vs. DoorsClosedWhileMoving

 Goal satisfaction requires agent cooperation

u  Agent: active component, controls behaviors
 software-to-be, device, human role, existing sw

TrainController, Passenger, SpeedSensor, TrackingSystem

 The more fine-grained a goal,
 the fewer agents required for its satisfaction

 SafeTransportation vs. DoorsClosedWhileMoving

u  Requirement: goal assigned to single software agent
 Train.measuredSpeed ≠ 0 → Train.DoorsState = "closed"

u  Expectation: goal assigned to single environment agent
 (prescriptive assumption)
 Train.measuredSpeed ≠ 0 iff Train.Speed ≠ 0

Goal types & categories

u  Two types of goals
–  Behavioral goals: prescribe intended behaviors
 can be satisfied in clear-cut sense

 used for deriving operational models & risk analysis
Soft goals prescribe preferred behaviors

Two categories
functional, non-functional goals

Behavioral goals prescribe sets of behaviors
declaratively

DoorsClosed
WhileMoving

moving
closed

stopped
closed

moving
closed

stopped
closed

stopped
open

Behavioral goals:
subtypes and specification patterns

u  Achieve [TargetCondition]:
[if CurrentCondition then] sooner-or-later TargetCondition

Achieve [FastJourney]:
 if train is at some platform then within 5 minutes it is at next platform

Current
Condition

Target
Condition

time

…… …

Achieve

Behavioral goals:
subtypes and specification patterns (2)

u  Maintain [GoodCondition]:
 [if CurrentCondition then] always GoodCondition "
 always (if CurrentCondition then GoodCondition)

Maintain [DoorsClosedWhileMoving]:

always (if a train is moving then its doors are closed)

time

Current
Condition

Good
Condition…

Good
Condition

Good
Condition

…

Maintain

Goal types & categories

u  Two types of goals
–  Behavioral goals: prescribe intended behaviors

 can be satisfied in clear-cut sense
 used for deriving operational models & risk analysis

–  Soft goals: prescribe preferred behaviors
 cannot be satisfied in clear-cut sense
 used for comparing alternative options

 “Stress conditions of air traffic controllers shall be reduced”

Goal types & categories

u  Two types of goals
–  Behavioral goals: prescribe intended behaviors

 can be satisfied in clear-cut sense
 used for deriving operational models

–  Soft goals: prescribe preferred behaviors
 cannot be satisfied in clear-cut sense
 used for comparing alternative options

u  Two categories of goals
–  functional: underlying operation, feature, service, task

–  non-functional: quality goals e.g. security, accuracy, …
 architectural goals, development goals,...

What kind of system model for RE ?

u  Multi-view
–  complementary facets, for model comprehensiveness

intentional, structural, responsibility, operational,
behavioral

–  inter-view rules for structural consistency

u  Multi-formalism
–  Diagrammatic

 Goal AND/OR refinement graphs
 UML subset: class, sequence, state diagrams
 Event-based behaviors: Labeled Transition Systems (LTS)

–  Formal (when & where needed): real-time temporal logic
–  Quantitative: propagation equations

What models for RE ?

Agents

on what?

why ?
how ?

who ?

Goals Risks

Conceptual objects

What models for RE ?

I

Threats

what ?

Operations

Behaviors -
Scenarios

Behaviors -
State machines

The focus here is on model building & analysis
at RE time

modeling

generation of RE deliverables

interviews documents

.html

.rtf
.pdf
.mif

existing systems

analysis

Goal-oriented model building

1. Domain analysis:
refine/abstract goals

SafeTransportation"

NoTrainsSameBlock"
NoCollision"

how?

why?

system-as-is

AND-refinement

OR-
 refinement

OR-assignment

Goal refinement until single assignments

Goal-oriented model building

Train" Block"0:1"
On"

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

SafeTransportation"

NoTrainsSameBlock"
NoCollision"

system-as-is

system-as-is

Goal-oriented model building

Train" Block"0:1"
On"

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

3. System-to-be:
enriched goals

(alternatives)

SafeAccel"

SafeTransportation"

NoTrainsSameBlock"
NoCollision"

how?

why?

Goal-oriented model building

Train" Block"0:1"
On"

Command"Driving"

4. System-to-be:
enriched objects
from new goals

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals

(alternatives)

SafeAccel"

SafeTransportation"

NoTrainsSameBlock"
NoCollision"

Goal-oriented model building

Train" Block"0:1"
On" SafeAcceler"

Command"Driving" 5. Responsibility analysis:
 agent assignment

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals

(alternatives)

4. S2B analysis:
enriched objects
from new goals

SafeAccel"

SafeTransportation"

NoTrainsSameBlock"
NoCollision"

Goal-oriented model building

Train" Block"0:1"
On" SafeAcceler"

Command"Driving"

1-5 // Risk & conflict
analysis

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals

(alternatives)

4. S2B analysis:
enriched objects
from new goals 5. Responsibility analysis:

 agent assignment

SafeAccel"

SafeTransportation"

NoTrainsSameBlock"
NoCollision"

Goal-oriented model building

Train" Block"0:1"
On" SafeAcceler"

Command"Driving"

6. Operationalization
 & behavior analysis

Send"
Command"

OnBoardController"

:OBC"

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

3. S2B analysis:
enriched goals

(alternatives)

4. S2B analysis:
enriched objects
from new goals 5. Responsibility analysis:

 agent assignment

1-5 // Risk & conflict
analysis

SafeAccel"

SafeTransportation"

NoTrainsSameBlock"
NoCollision"

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model items
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

Specifying model items formally

u  To support more accurate analysis & derivations

u  Optional "button”: only when and where needed

u  Declarative formalism for goals & domain properties

–  real-time temporal logic

u  More operational formalism for operations

–  goal-oriented pre-/postconditions

Specifying goals

 Goal Maintain [DoorsClosedWhileMoving]

 Def All train doors shall be kept closed at any time
 when the train is moving

 FormalSpec ∀ tr: Train
 tr.Speed ≠ 0 ⇒ tr.DoorState = ‘closed’

 [Category Safety]

 [Priority Highest]

 [Source From interview with railway engineer X ...]

DoorsClosedWhileMoving
goal

annotation

Some bits of real-time linear temporal logic

o P: P shall hold in the immediately next state

◊ P: P shall hold in some future state

o P: P shall hold in every future state 	

P U N: P shall hold in every future state
 until N holds

P W N: P shall hold in every future state
 unless N holds

Some bits of real-time linear temporal logic (2)

Propositional connectives 	

 ∧ , ∨ , ¬ , → , ↔	

First-order language

 quantifiers on object instance variables ∀ , ∃

P ⇒ Q : o (P → Q)

P ⇔ Q : o (P ↔ Q)

Some bits of real-time linear temporal logic (3)

Real-time constructs:

o≤T P: P shall hold in every future state
 up to T time units"

◊≤T P: P shall hold within T time units

Operators on past:

• P: P did hold in the previous state (right before)"

♦ P, ■ P, P S O, P B O: always P since/back to O

♦≤T P, ■≤T P, etc"

@ P = • (¬ P) ∧ P

Interpretation over historical state sequences

H: historical sequence of states (behavior)

i: time position (time is isomorphic to naturals)

 (H, i) |= o P iff (H, next(i)) |= P
 smallest time unit

 (H, i) |= ◊ P iff (H, j) |= P for some j ≥ i

 (H, i) |= o P iff (H, j) |= P for all j ≥ i

Interpretation over historical state sequences (2)

 (H, i) |= P U N iff (H, j) |= N for some j ≥ i
 and (H, k) |= P for all k: i ≤ k < j

 (H, i) |= P W N iff (H, i) |= P U N or (H, i) |= o P

 (H, i) |= ◊≤T P iff (H, j) |= P for some j ≥ i
 with dist (i,j) ≤ T

Specifying goals: examples

 Goal Maintain [DoorsClosedBetweenPlatforms]

 Def All train doors shall be kept closed at any time
 between two successive platforms

 FormalSpec …. ?
 [Category Safety]

 [Priority Highest]

 [Source From interview with railway engineer X ...]

annotation

DoorsClosedBetweenPlatforms
goal

Specifying goals: examples

 Goal Maintain [DoorsClosedBetweenPlatforms]

 Def All train doors shall be kept closed at any time
 between two successive platforms

 FormalSpec ∀ tr: Train, pl: Platform
	
 At (tr, pl) ∧ ο ¬ At (tr, pl) ⇒ 	
	

 tr.Doors = "closed" W At (tr, next(pl))

 [Category Safety]
 [Priority Highest]
 [Source From interview with railway engineer X ...]

DoorsClosedBetweenPlatforms
goal

Specifying goals: examples

 Goal Achieve [FastJourneyBetweenPlatforms]

 Def A train shall reach the next platform from the current one
 within T time units

 FormalSpec …. ?
 [Category …]

 [Priority …]

 [Source …]

Achieve [FastJourneyBetweenPlatforms]

annotation

Specifying goals: examples

 Goal Achieve [FastJourneyBetweenPlatforms]

 Def A train shall reach the next platform from the current one
 within T time units

 FormalSpec ∀ tr: Train, pl: Platform	

	
 At (tr, pl) ⇒ ◊≤T At (tr, next (pl)

 [Category Safety]

 [Priority Highest]

 [Source From interview with railway engineer X ...]

Achieve [FastJourneyBetweenPlatforms]

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model elements
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

A goal model is an AND/OR graph

NoTrainCollision

SafeTransportation

EffectivePassengersTransportation

RapidTransportation

FastJourney DoorsClosed
WhileMoving

FastRunWhen
 GoSignal

SignalSetTo
GoPromptly

BlockSpeed
 Limited

system-as-is to-be

WorstCaseStopping
DistanceMaintained

NoTrainsOn
SameBlock

HighFrequency

AND-refinement

OR-refinement

u  Goals are recursively refined/abstracted

A goal model is an AND/OR graph (2)

u  Leaf nodes = goals assignable to single system agents

Maintain [DoorsClosedWhileMoving]

 Moving Iff NonZeroSpeed Maintain [DoorsClosedWhileNonZeroSpeed]

Maintain [DoorsStateClosed
If NonZeroMeasuredSpeed]

MeasuredSpeed
 = PhysicalSpeed

TrainController

software
agent

environment
agent

 responsibility assignment

DoorsActuator

 requirement

SpeedSensor

DoorsClosed Iff
DoorsStateClosed

AND-refinements

u  AND-refinement of goal G into subgoals SG1, ..., SGn means:

 G can be satisfied by satisfying SG1, ..., SGn

u  AND-refinements should be …

–  complete: {SG1, ..., SGn, Dom} |= G
 essential for requirements completeness

–  consistent: {SG1, ..., SGn, Dom} |≠ false

–  minimal: {SG1, ..., SGj-1, SGj+1, ..., SGn, Dom} |≠ G
 to avoid unnecessarily restrictive requirements/expectations

OR-refinements

u  OR-refinement of goal G into refinements R1, ..., Rm means:
 G can be satisfied by satisfying all subgoals from
 any of the alternative refinements Ri

u  Alternative goal refinements yield different options
 (system variants)

–  pros/cons to be evaluated against soft goals for selection

 Avoid [TrainCollisions]

Avoid [TrainsOn
 SameBlock]

Maintain [WorstCase
 StoppingDistance]

 alternative

Checking goal refinements

u  Aim: show that refinements are correct and complete
 Subgoals, Assumptions, DomainProps |- ParentGoal

u  (Approach 1: use theorem prover)
 heavyweight, non-constructive

u  Approach 2: front end to bounded SAT solver

–  incremental check/debug of goal model fragments

–  on selected object instances (propositionalization)

Input: SubG1 ∧ ... ∧ SubGn ∧ Dom ∧ ¬ ParentGoal

Output: OK
 KO + counter-example scenario

Check demo

Refinement checking

Approach 3: reuse refinement patterns

u  Catalogue of patterns encoding refinement tactics

u  Generic refinements proved formally, once for all

u  Reuse through instantiation, in matching situation

 Can be used informally (natural language templates)

C ⇒ C W T!C ∧ D ⇒ ◊ T! C ⇒ ◊ D!

C ⇒ ◊ T!

M ⇒ ◊ T!C ⇒ ◊ M!

C ⇒ ◊ T!

milestone-driven	
 guard introduction	

Checking goal refinements with patterns

Achieve [TrainProgress]
On (tr, b) ⇒ ◊ On (tr, next(b))"

Achieve [ProgressWhenGo]
 On (tr, b) ∧ Go [next(b)] "
 ⇒ ◊ On (tr, next(b))"

Achieve [SignalSetToGo]
 On (tr, b) ⇒ ◊ Go [next(b)]"

missing subgoal !!
detectable automatically

 Maintain [TrainWaiting]!
 On (tr, b) ⇒ 	

 On (tr, b) W On (tr, next(b))"

Achieve [TrainProgress]
On (tr, b) ⇒ ◊ On (tr, next(b))"

Achieve [ProgressWhenGo]
 On (tr, b) ∧ Go [next(b)] "
 ⇒ ◊ On (tr, next(b))"

Achieve [SignalSetToGo]
 On (tr, b) ⇒ ◊ Go [next(b)]"

mathematical proof
 hidden, reusable

guard introduction

Checking goal refinements with patterns

u  Refinement by case
–  applicable when the goal satisfaction space can be

partitioned into cases (disjoint, covering all possibilities)

Some other frequent patterns

 C ⇒ ◊ T"

C ∧ Case2 "
⇒ ◊ T2

C ∧ Case1 "
⇒ ◊ T1

T1 ∨ T2
 ⇒ T

Case1 ∨ Case2
¬ (Case1 ∧ Case2)

(Similar pattern for Maintain goals)

GoalOnUnMonitorableCondition

GoalOnMonitorable
Condition

MonitorableCondition ⇔
UnmonitorableCondition

MotorRaising ⇒ HandBrakeReleased

motor.Regime = ‘up’ ⇒
HandBrakeReleased

motor.Regime = ‘up’
⇔ MotorRaising

instantiation

Other frequent patterns … (2)

GoalOnUnControllableCondition

GoalOnControllable
Condition

ControllableCondition ⇔
UncontrollableCondition

instantiation

motor.Regime = ‘up’ ⇒ HandBrakeReleased

motor.Regime = ‘up’ ⇒
handBrakeCtrl = ‘off’

handBrakeCtrl = ‘off’
⇔ HandBrakeReleased

requirement

Other frequent patterns … (3)

Patterns can be used for operationalization

Operation Op2
 DomPre T
 DomPost ¬ T
 ReqPre for G: ¬ C	

Operation Op1
 DomPre ¬ T
 DomPost T
 ReqTrig for G: C

G: C ⇒ ¡ T	
proved correct
once for all

Operationalization pattern: example

HighWaterSignal = 'On' ⇒ ¡ PumpSwitch = 'On'	

C: HighWaterSignal = 'On'
T: PumpSwitch = 'On'

Operation Op2
 DomPre T
 DomPost ¬ T
 ReqPre for G: ¬ C	

Operation Op1
 DomPre ¬ T
 DomPost T
 ReqTrig for G: C

Operationalization pattern: example

Operation SwitchPumpOn
 DomPre PumpSwitch ≠ On
 DomPost PumpSwitch = On
 ReqTrig for RootGoal
 HighWaterSignal = 'On'

Operation SwitchPumpOff
 DomPre PumpSwitch = On
 DomPost PumpSwitch ≠ On
 ReqPre for RootGoal

 HighWaterSignal ≠ 'On'

HighWaterSignal = 'On' ⇒ ¡ PumpSwitch = 'On'	

C: HighWaterSignal = 'On'
T: PumpSwitch = 'On'

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model elements
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

Obstacle analysis for risk-driven RE

u  Motivation: goals in refinement graph are often too ideal,
 likely to be violated under abnormal conditions

 (unintentional or intentional agent behaviors)

u  Risk analysis can be anchored on goal models

What are obstacles ?

u  Obstacle to goal = condition on system for goal violation

•  {O, Dom } |= ¬ G "obstruction"

•  {O, Dom } |≠ false "domain consistency, obstacle satisfiability!

e.g. G: StopSignal ⇒ TrainStopsAtBlockSignal

 Dom: TrainStopsAtStopSignal ⇒ DriverResponsive

 O: ◊ (StopSignal ∧ ¬ DriverResponsive)

u  For behavioral goal: existential property capturing
 unadmissible behavior
 (negative scenario)

[van Lamsweerde & Letier, TSE’2000]

Completeness of a set of obstacles

u  Ideally, a set of obstacles to G should be complete

 {¬ O1,..., ¬ On, Dom } |= G domain completeness"

e.g.

DriverResponsive ∧ ¬ BrakeSystemDown ∧ SignalVisible ∧ StopSignal

 ⇒ TrainStopsAtBlockSignal ???

u  Completeness is highly desirable for mission-critical goals

–  but bounded by what we know about the domain

u  Obstacle analysis may help elicit relevant domain properties

Obstacle categories for heuristic identification

Correspond to goal categories & their refinement ...

u  Hazard obstacles obstruct Safety goals

u  Threat obstacles obstruct Security goals
–  Disclosure, Corruption, DenialOfService, ...

u  Inaccuracy obstacles obstruct Accuracy goals

u  Misinformation obstacles obstruct Information goals
–  NonInformation, WrongInformation, TooLateInformation, ...

u  Dissatisfaction obstacles obstruct Satisfaction goals
–  NonSatisfaction, PartialSatisfaction, TooLateSatisfaction, ...

u  Unusability obstacles obstruct Usability goals

u  ...

Obstacle refinement

u  AND-refinement of obstacle O should be ...
–  complete: {subO1,..., subOn, Dom } |= O
–  consistent: {subO1,..., subOn, Dom } |≠ false
–  minimal: {subO1,..., subOj-1, subOj+1 , ..., subOn, Dom } |= O

u  OR-refinement of obstacle O should be ...
–  entailments: {subOi, Dom } |= O
–  domain-consistent: {subOi, Dom } |≠ false!

–  domain-complete: {¬ subO1,..., ¬ subOn, Dom } |= ¬ O
–  disjoint: {subOi, subOj, Dom } |= false!

u  If subOi OR-refines O and O obstructs G
 then subOi obstructs G

Obstacle diagrams as AND/OR refinement trees

u  Anchored on leafgoals in goal model
–  root: ¬ G
–  obstacle AND/OR-refinement: same semantics as goals
–  leaf obstacles: feasibility, likelihood, resolution easier to determine

 obstruction

 StopSignal ⇒
TrainStopsAtBlockSignal

StopSignal ∧
¬ TrainStopsAtBlockSignal

¬ SignalVisible

¬ DriveResponsive

BrakeSystemDown

…

 root obstacle

 OR-refinement

 ResponsivenessCheck
SentRegularly

 resolution

 countermeasure goal

 obstacle

Obstacle diagrams as AND/OR refinement trees (2)

can be used informally

MobilizedAmbulance Not
AtIncident InTime

AmbulanceLost

AmbulanceStuck
InTrafficJam

Ambulance
BrokenDown

 AmbulanceCrew

NotInFamiliarArea

In-carGPS
NotWorking

Ambulance At Incident
InTime WhenMobilized

And-refinement

Obstructions propagate bottom-up
in goal AND-refinement trees

u  Cf. De Morgan’s law: ¬ (G1 ∧ G2) equivalent to ¬ G1 ∨ ¬ G2

=> Severity of consequences of an obstacle can be assessed
 in terms of higher-level goals obstructed

 G

propagated
obstruction

G1

G2

¬ G1
1

¬ G2
2

¬ G

Obstacle analysis for
increased system robustness

u  Anticipate obstacles ...
⇒	
 more realistic goals,
 new goals as countermeasures to abnormal conditions
⇒ more complete, realistic goal model

u  Obstacle analysis:
 For selected goals in the goal model ...

–  identify as many obstacles to it as possible;
–  assess their likelihood & severity;
–  resolve them according to likelihood & severity

 => new goals as countermeasures in the goal model

Obstacle analysis & goal model elaboration
are intertwined

Goal model
elaboration

data dependency

Obstacle
identification

Obstacle
assessment

Obstacle
resolution

u  Goal-obstacle analysis loop terminates when remaining obstacles
can be tolerated
–  unlikely or acceptable consequences

u  Which goals to consider in the goal model?
–  leafgoals (requirements or expectations): easier to find how to

break finer-grained goals
–  mission-critical goals

Obstacle analysis : a motivating example

Real air traffic control project, CEDITI, completed March 2002

Uberlingen
mid-air collision, July 2002

Facts
–  July 1st 2002, southern Germany
–  DHL Boeing 757 x Russian Tu-154
–  71 people killed, incl. 52 children

Preliminary analysis shows:
–  STCA out of order at Swiss ATC
–  Only 1 controller on duty at crash time (the other one was

taking a break) à controller overloaded
–  Problem between air traffic handover between Switzerland

and Germany for another flight landing
–  German ATC failed to call Swiss ATC
–  Conflict between Tu’s TCAS embedded system and tower’s

order
–  Pilot choice: Tower’s order prior to TCAS
–  Discrepancies between screen displays and radar traces

Obstacle analysis : a motivating example

–  STCA out of order at Swiss ATC
–  Only 1 controller on duty at crash

time (the other one was taking a
break) à controller overloaded

–  Problem between air traffic handover
between Switzerland and Germany
for another flight

–  German ATC failed to call Swiss ATC
–  Conflict between Tu’s TCAS

embedded system and tower’s order
–  Pilot choice: Tower’s order prior to

TCAS
–  Discrepancies between screen

displays and radar traces

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model elements
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

Obstacle identification

u  For obstacle to goal G ...

–  negate G;

–  find as many AND/OR refinements of ¬ G as possible
in view of domain properties ...

–  ... until reaching obstruction preconditions
•  that are feasible by the environment of the

agents assigned to G
•  whose likelihood & severity is easy to assess

 = goal-anchored construction of fault-tree

WorstCaseStoppingDistanceMaintained

AccelerationSent
InTimeToTrain

SafeAcceleration
Computed

SentCommand
ReceivedByTrain

ReceivedCommand
ExecutedByTrain

Obstacle identification: informal example

Acceleration
 NotSafe

AccelerationCommand
 Not
 SentInTimeToTrain

WorstCaseStoppingDistanceMaintained

AccelerationSent
InTimeToTrain

SafeAcceleration
Computed

SentCommand
ReceivedByTrain

ReceivedCommand
ExecutedByTrain

AccelerationCommand
 Not
ReceivedInTimeByTrain

 ...

Obstacle identification: informal example

Obstacle identification: informal example

Acceleration
 NotSafe

AccelerationCommand
 Not
 SentInTimeToTrain

 NotSent

WorstCaseStoppingDistanceMaintained

AccelerationSent
InTimeToTrain

SafeAcceleration
Computed

SentCommand
ReceivedByTrain

ReceivedCommand
ExecutedByTrain

AccelerationCommand
 Not
ReceivedInTimeByTrain

 ...

SentLate

SentToWrongTrain

 ...

ReceivedLate

Corrupted

NotReceived

Can we identify obstacles systematically?

u  The problem: generate obstacles O such that

 0, Dom |- ¬ G

 Dom |≠ ¬ O

u  Various techniques available …

–  tautology-based refinement from ¬ G

–  regression of ¬ G through Dom

–  reuse of formal obstruction patterns

–  combine model checking and inductive learning

Generating obstacles:
tautology-based refinement

u  Take goal negation as root

u  Use tautologies to drive refinements
 e.g.

 ¬ (A ∧ B) equiv ¬ A ∨ ¬ B

 ¬ (A ∨ B) equiv ¬ A ∧ ¬ B

 ¬ (A ⇒ B) equiv A ∧ ¬ B

 ¬ (A ⇔ B) equiv (A ∧ ¬ B) ∨ (¬ A ∧ B)

 => complete OR-refinements when ∨-connective gets in

Tautology-based refinement:
A320 braking logic example

MovingOnRunway ⇔ MotorReversed

WheelsTurning
⇔ MotorReversed

MovingOnRunway
 ⇔ WheelsTurning

Tautology-based refinement:
A320 braking logic example

 NOT
MovingOnRunway
⇔ WheelsTurning

 NOT
WheelsTurning

⇔ MotorReversed

obstruction

MovingOnRunway ⇔ MotorReversed

MovingOnRunway
 ⇔ WheelsTurning

WheelsTurning
⇔ MotorReversed

Tautology-based refinement:
A320 braking logic example

 NOT
MovingOnRunway
⇔ WheelsTurning

 NOT
WheelsTurning

⇔ MotorReversed

MotorReversed
 ∧
 ¬ WheelsTurning

obstruction

OR-refinement
 (complete)

WheelsTurning
 ∧
 ¬ MotorReversed

MovingOnRunway
 ∧
 ¬ WheelsTurning

 WheelsTurning
 ∧
 ¬ MovingOnRunway

MovingOnRunway ⇔ MotorReversed

MovingOnRunway
 ⇔ WheelsTurning

WheelsTurning
⇔ MotorReversed

Recall: obstacle analysis for
increased system robustness

u  Obstacle = feasible precondition for goal obstruction

u  Anticipate obstacles ...
⇒	
 new goals as countermeasures to abnormal conditions
⇒ more complete goal model

u  Obstacle analysis:
 For selected goals in the goal model ...

–  identify as many obstacles to it as possible;
–  assess their likelihood & severity;
–  resolve them according to likelihood & severity

Can we identify obstacles systematically?

u  The problem: generate obstacles O such that

 0, Dom |- ¬ G

 Dom |≠ ¬ O

u  Various techniques available …

–  tautology-based refinement from ¬ G

–  regression of ¬ G through Dom

–  reuse of formal obstruction patterns

–  combine model checking and inductive learning

Generating obstacles:
regressing goal negations

MovingOnRunway ⇒ o ReverseThrustEnabled

MovingOnRunway
 ⇔ WheelsTurning

 WheelsTurning
 ⇒ o ReverseThrustEnabled

?
Original A 320 braking logic

Generating obstacles:
regressing goal negations

Find precondition for obstruction of ...
 MovingOnRunway ⇒ WheelsTurning

 →
 !
 →

 →

 Warsaw obstacle

Generating obstacles:
regressing goal negations

Find precondition for obstruction of ...
 MovingOnRunway ⇒ WheelsTurning

 → goal negation:
 ◊ MovingOnRunway ∧ ¬ WheelsTurning!
 →

 →

 Warsaw obstacle

Generating obstacles:
regressing goal negations

Find precondition for obstruction of ...
 MovingOnRunway ⇒ WheelsTurning

 → goal negation:
 ◊ MovingOnRunway ∧ ¬ WheelsTurning!
 → regress through domain properties:
 ? necessary conditions for wheels turning ?

 →

 Warsaw obstacle

Generating obstacles:
regressing goal negations

Find precondition for obstruction of ...
 MovingOnRunway ⇒ WheelsTurning

 → goal negation:
 ◊ MovingOnRunway ∧ ¬ WheelsTurning!
 → regress through domain properties:
 ? necessary conditions for wheels turning ?
 WheelsTurning ⇒ ¬ Aquaplaning

 i.e. Aquaplaning ⇒ ¬ WheelsTurning
 →

 Warsaw obstacle

Generating obstacles:
regressing goal negations

Find precondition for obstruction of ...
 MovingOnRunway ⇒ WheelsTurning

 → goal negation:
 ◊ MovingOnRunway ∧ ¬ WheelsTurning!
 → regress through domain properties:
 ? necessary conditions for wheels turning ?
 WheelsTurning ⇒ ¬ Aquaplaning

 i.e. Aquaplaning ⇒ ¬ WheelsTurning
 → RHS unifiable:
 ◊ MovingOnRunway ∧ Aquaplaning

Resulting obstacle trees

 NOT
MovingOnRunway
⇔ WheelsTurning

 NOT
MotorReversed
⇔ WheelsTurning

 Aquaplaning

 ...

obstruction

OR-refinement
 (complete)

 WheelsNotOut

 WheelsBroken

 ...
 ...

 ...

MotorReversed ⇔ MovingOnRunway

MovingOnRunway
 ⇔ WheelsTurning

Warsaw
obstacle

MotorReversed
 ∧
 ¬ WheelsTurning

WheelsTurning
 ∧
 ¬ MotorReversed

MovingOnRunway
 ∧
 ¬ WheelsTurning

 WheelsTurning
 ∧
 ¬ MovingOnRunway

WheelsTurning
⇔ MotorReversed

The regression procedure

u  Initial step:
–  take O := ¬ G

u  Inductive step:
–  let
 A ⇒ C be the domain property selected

 with C matching some L in O whose
 occurrences are all positive in O

–  then µ := mgu (L, C) (most general unifier)

 O := O [L / A. µ]

Every iteration produces finer sub-obstacles

Generating obstacles:
reusing formal obstruction patterns

u  Same idea as goal refinement patterns - obstructions here

domain property:
necessary condition for target condition

obstacle
T ⇒ N!◊ C ∧ ¬ N!

C ⇒ T"

◊ C ∧ ¬ T"

u  Useful pattern for eliciting relevant domain properties
–  “what are necessary conditions for TargetCondition?”

Generating obstacles:
reusing formal obstruction patterns

u  Very frequent pattern …

T ⇒ N"◊ C ∧ ¬ N"

C ⇒ T"

◊ C ∧ ¬ T"

o (StopSignal → TrainStops)

 ◊ (StopSignal ∧ ¬ TrainStops)

TrainStops ⇒ DriverResponsive ◊ (StopSignal ∧ ¬ DriverResponsive)

Some other frequent obstruction patterns

T ⇒ P"◊ (C ∧ o (¬ T U ¬ P))"

C ⇒ ◊ T"

◊ (C ∧ o ¬ T)"

starvation	

◊ (C ∧ o ¬ M)" C ∧ ◊ T ⇒ (¬ T W M)"

C ⇒ ◊ T"

◊ (C ∧ o ¬ T)"

milestone

backward chain	

◊ (C ∧ ◊ B)" B ⇒ ◊ ¬ T"

C ⇒ o T"

◊ (C ∧ ◊ ¬ T)"

Some other frequent obstruction patterns

T ⇒ P"◊ (C ∧ o (¬ T U ¬ P))"

C ⇒ ◊ T"

◊ (C ∧ o ¬ T)"

starvation	

◊ (C ∧ o ¬ M)" C ∧ ◊ T ⇒ (¬ T W M)"

C ⇒ ◊ T"

◊ (C ∧ o ¬ T)"

milestone

backward chain	

◊ (C ∧ ◊ B)" B ⇒ ◊ ¬ T"

C ⇒ o T"

◊ (C ∧ ◊ ¬ T)"

Instantiating the starvation pattern

Gets (u, r) 	

⇒ ¬ Coalition (u, r)"

∀u: User, r: Resource"
Requests (u, r) ⇒ ◊ Gets (u, r)"

∃ u: User, r: Resource	

◊ (Requests (u, r) ∧ o ¬ Gets (u, r))"

∃ u: User, r: Resource	

◊ (Requests (u, r) ∧ 	

o (¬ Gets (u, r) U Coalition (u, r)))"

Generating obstacles:
another example

BrakeReleased ⇔ DriverWantsToStart

BrakeReleased
⇔ MotorRaising

MotorRaising ⇔
AccelerPedalPressed

AccelerPedalPressed
⇔ DriverWantsToStart

MotorRaising ∧
¬ AccelerPedalPressed

 ...

 ...

Generating obstacles:
another example

BrakeReleased ⇔ DriverWantsToStart

BrakeReleased
⇔ MotorRaising

MotorRaising ⇔
AccelerPedalPressed

AccelerPedalPressed
⇔ DriverWantsToStart

AccelerPedalPressed ∧
¬ DriverWantsToStart

MotorRaising ∧
¬ AccelerPedalPressed

 AirConditioningRaising

 ...

 ...

cf. driver killed by his
luxurious car on a hot summerday

Generating obstacles:
another example

BrakeReleased ⇔ DriverWantsToStart

BrakeReleased
⇔ MotorRaising

MotorRaising ⇔
AccelerPedalPressed

AccelerPedalPressed
⇔ DriverWantsToStart

AccelerPedalPressed ∧
¬ DriverWantsToStart

 ...
 ...

 ...

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model elements
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

Combining model checking & inductive learning
for obstacle generation �

Take dom props �
(+ obstacle negations); �

synthesize LTS�

Learn
inductively�

Extract
examples�

Model check �
against goal�

[Alrajeh, Kramer, van Lamsweerde, Russo & Uchitel, ICSE’2012] �

Using the LTSA model checker�

Model M�

F-LTL property P �

Model consistent wrt P �

Semantics L (M) �

Counter- �
example �

⊨

No	
 Yes	

A: �

Q: �

?	

[Giannakopoulou & Magee, FSE’2003] �

C

Inductive logic programming �

 K knowledge base�
 E+ set of positive examples�
 E- set of negative examples�
 IC integrity constraints�

Given: �

Find: �
 H generalisation such that �
 { K, H } ⊨ E+ �
 { K, H } ⊭ E- �
 { K, H, IC } ⊭ false�

Machine learning technique for constructing concept descriptions
from examples + logical domain theory [Muggleton 1994]

Inductive Logic Programming
systems available (XHAIL, TAL)�

•  scalable for finite domains �
•  sound and complete�
•  fully automated�

[Ray 2009, Corapi et al 2010]

A domain-complete set of obstacles {O1, …, On} such that �
 { Oi, D } ⊨ ¬ G , { Oi, D } ⊭ false�

" "{¬ O1 , … , ¬ On , D} ⊨ G �
where ⊨ is interpreted as LTL satisfaction relation �

 wrt all LTS traces�

The problem, more precisely�

A declarative model: set of LTL goals G + domain properties D �
" D ⊭ G , { D, G } ⊭ false�

Find	

Given	

The solution, more precisely�

Elicit new Dom’

BP:= Dom

Select

Synthesise LTS

L(BP)

BP := BP [¬O [Dom’

Model Check

L(BP) |= C) ¬(⇥T)

Model Check

L(BP) |= C) ⇥T

Learn

tr

+

tr

�

e�

e+Dom’

{Oi}
O

Anti-target: C) ¬(⇥T)

Goal: C) ⇥T

(BP)

BP

(BP)

+

-

-

+

The solution, more precisely�

Elicit new Dom’

BP:= Dom

Select

Synthesise LTS

L(BP)

BP := BP [¬O [Dom’

Model Check

L(BP) |= C) ¬(⇥T)

Model Check

L(BP) |= C) ⇥T

Learn

tr

+

tr

�

e�

e+Dom’

{Oi}
O

Anti-target: C) ¬(⇥T)

Goal: C) ⇥T

(BP)

BP

(BP)

+

-

-

+

The solution, more precisely�

Elicit new Dom’

BP:= Dom

Select

Synthesise LTS

L(BP)

BP := BP [¬O [Dom’

Model Check

L(BP) |= C) ¬(⇥T)

Model Check

L(BP) |= C) ⇥T

Learn

tr

+

tr

�

e�

e+Dom’

{Oi}
O

Anti-target: C) ¬(⇥T)

Goal: C) ⇥T

(BP)

BP

(BP)

+

-

-

+

The solution, more precisely�

Elicit new Dom’

BP:= Dom

Select

Synthesise LTS

L(BP)

BP := BP [¬O [Dom’

Model Check

L(BP) |= C) ¬(⇥T)

Model Check

L(BP) |= C) ⇥T

Learn

tr

+

tr

�

e�

e+Dom’

{Oi}
O

Anti-target: C) ¬(⇥T)

Goal: C) ⇥T

(BP)

BP

(BP)

+

-

-

+

The solution, more precisely�

Elicit new Dom’

BP:= Dom

Select

Synthesise LTS

L(BP)

BP := BP [¬O [Dom’

Model Check

L(BP) |= C) ¬(⇥T)

Model Check

L(BP) |= C) ⇥T

Learn

tr

+

tr

�

e�

e+Dom’

{Oi}
O

Anti-target: C) ¬(⇥T)

Goal: C) ⇥T

(BP)

BP

(BP)

+

-

-

+

The solution, more precisely�

Elicit new Dom’

BP:= Dom

Select

Synthesise LTS

L(BP)

BP := BP [¬O [Dom’

Model Check

L(BP) |= C) ¬(⇥T)

Model Check

L(BP) |= C) ⇥T

Learn

tr

+

tr

�

e�

e+Dom’

{Oi}
O

Anti-target: C) ¬(⇥T)

Goal: C) ⇥T

(BP)

BP

(BP)

+

-

-

+

Back to trains and signals …�

Input: goals

Goal Achieve [TrainStoppedAtBlockSignal If StopSignal]�
 StopSignal ⇒ o TrainStopped�

 General form �

"C ⇒ Θ T " �

"Θ : temporal LTL operator ο, ◊, o, ⇒, … �

Input: domain properties�

Dom props:�
 TrainStopped ⇒ DriverResponsive�
 TrainStopped ⇒ SignalVisible�

Fluent Definitions: �
 TrainStopped = < stop_train, start_train, false > �
 StopSignal = < set_to_stop, set_to_go, false > �
 SignalVisible = < clear_signal, obstruct_signal, true > �
 DriverResponsive = < driver_responds, driver_ignores, true > �
�

Temporal assertions (necessary conditions for goal target) �
+ fluent definitions�

Synthesizing LTL domain props �
and model checking �

•  Checking for obstacle feasibility�

"LTL(D) ⊨ C ⇒ Θ T " " counterexample�

�

•  Checking for goal satisfiability �

"LTL(D) ⊨ C ⇒ ¬ Θ T witness�

Counterexample generation �

TrainStopped ⇒ DriverResponsive�
" "∧�

TrainStopped ⇒ SignalVisible�

StopSignal ⇒ �
 ο TrainStopped�⊨	

0 1

4

2

3

start train

set to go

set to stop

clear signal

driver responds

obstruct signal

d
r
i
v
e
r

i
g
n
o
r
e

s

t

o

p

t

r

a

i

n

clear signal

driver responds

start train

set to go

signal stop

obstruct signal

d
r
i
v
e
r
i
g
n
o
r
e

obstruct signal

driver ignore

start train

set to go

set to stop

clear signal

d
r
i
v
e
r
r
e
s
p
o
n
d
s

clear signal

driver ignores

start train

set to go

set to stop

obstruct signal

d
r
i
v
e
r
r
e
s
p
o
n
d
s

s

t

a

r

t

t

r

a

i

n

driver responds

stop train

set to go

set to stop

clear signal

tr-: set_to_stop, driver_ignores!

Witness generation �

0 1

4

2

3

start train

set to go

set to stop

clear signal

driver responds

obstruct signal

d
r
i
v
e
r
i
g
n
o
r
e

s

t

o

p

t

r

a

i

n

clear signal

driver responds

start train

set to go

signal stop

obstruct signal

d
r
i
v
e
r
i
g
n
o
r
e

obstruct signal

driver ignore

start train

set to go

set to stop

clear signal

d
r
i
v
e
r
r
e
s
p
o
n
d
s

clear signal

driver ignores

start train

set to go

set to stop

obstruct signal

d
r
i
v
e
r
r
e
s
p
o
n
d
s

s

t

a

r

t

t

r

a

i

n

driver responds

stop train

set to go

set to stop

clear signal

tr+: set_to_stop, stop_train!

TrainStopped ⇒ DriverResponsive�
" "∧�

TrainStopped ⇒ SignalVisible�

StopSignal ⇒ �
 ¬ ο TrainStopped�⊨	

:-‐	 holdsAt(trainStopped,T,S),	 	
	 	 	 not	 holdsAt(driverResponsive,T,S).	

…	

initiates(stop_train,trainStopped).	 	

terminates(start_train,trainStopped).	

…	

initiates(driver_responds,driverResponsive).	
terminates(driver_ignores,driverResponsive).	

initially(driverResponsive).	

…	

holdsAt(trainStopped,T2,S):-‐	 	
	 	 	 	 	 	 holdsAt(stopSignal,T1,S),	 next(T2,T1),	 	

	 	 	 	 	 	 not	 obstructed_next(trainStopped,T1,S).	

…	

Preparation for learning �

set_to_stop, stop_train!
set_to_stop, driver_ignores!

StopSignal ⇒ ο TrainStopped�

 TrainStopped ⇒ DriverResponsive�
 TrainStopped ⇒ SignalVisible�
 TrainStopped = <stop_train, start_train, false> �
 StopSignal = <set_to_stop, set_to_go, false> �
 SignalVisible = <clear_signal, obstr_signal, true> �
 DriverResponsive = <responds, ignores, true> �

Domain properties, goals, counterexample and witness(es) �
are automatically translated into �

the logic programming formalism understood by learning tool �

Translation into a logic program (1)�

u  Domain properties: fluent definitions …�

 DriverResponsive = < driver_responds, driver_ignores, true > �
�
�
�

 … add facts to knowledge base K
	 initiates(driver_responds,driverResponsive).	 	
	 terminates(driver_ignores,driverResponsive).	
	 initially(driverResponsive).	

�
�

Translation into a logic program (2) �

u  Domain properties: temporal assertions …�

"TrainStopped ⇒ DriverResponsive�
�
�
�
�
 … add to integrity constraints IC the rule�

	 :-‐	 holdsAt(trainStopped,T,S),	 	
	 	 	 	 not	 holdsAt(driverResponsive,T,S).	

�
�
�

Translation into a logic program (3) �

u  Goals …�

"StopSignal ⇒ o TrainStopped�
�
�
�

 … add to the knowledge base K the rule�
	 holdsAt(trainStopped,T2,S):-‐	 	

	 	 	 	 	 	 	 holdsAt(stopSignal,T1,S),	 	
	 	 next(T2,T1),	 	

	 	 	 	 	 	 	 not	 obstructed_next(trainStopped,T1,S).	
�
�
�

no obstacle that would prevent the train from stopping �

Translation into a logic program (4) �

u  Counterexamples …�

"set_to_stop, driver_ignores!
�
�

 … add to the knowledge base the facts�
	 	 	 	 	 	 	 	 happens(set_to_stop,0,cx).	 	
	 	 	 	 	 	 	 happens(driver_ignores,1,cx).	

 … add to the positive examples of obstacle the fact �
	 	 not	 holdsAt(trainStopped,2,cx).	 �

�
�
�

generalization should be inferred to explain why the goal’s
target is obstructed in this example�

Translation into a logic program (5) �

u  Witnesses …�

!set_to_stop, stop_train!
�
�
�
 … add to the knowledge base the facts�

	 	 happens(set_to_stop,0,wx).	 	
	 	 	 	 	 	 	 happens(stop_train,1,wx).	

 … add to the negative examples of obstacle the fact: �
	 holdsAt(trainStopped,2,cx).	

�
�
�

generalization to be inferred should be consistent with �
goal’s target not being obstructed in this negative example�

Learner output: obstacle condition �

u  	 Generalised assertion covering counterexample, �
 excluding witness �

	 	 	 	 	 	 	 obstructed_next(trainStopped,T,S):-‐	
	 	 holdsAt(stopSignal,T,S),	
	 	 not	 holdsAt(driverResponsive,T,S).	

	

	

	

	 	 	 	 O1	 =	 ◊	 (StopSignal ⋀ ¬ DriverResponsive)

A set of obstacles {O2, …, On} such that �
" "{ Oi, D } ⊨ ¬ G , { Oi, D } ⊭ false�
" "{ D , ¬ O1 , … , ¬ On } ⊨ G �

where ⊨ is interpreted as satisfaction relation �
 wrt all LTS traces�

Second process iteration�

A declarative model: set of LTL goals G + domain properties D �
 + obstacle O1 �
 {D, ¬ O1} ⊭ G , {D, G} ⊭ false�

Find	

Given	

Second process iteration (2)

Domain Properties: �
 TrainStopped ⇒ DriverResponsive�
 TrainStopped ⇒ SignalVisible�
 TrainStopped = < stop_train, start_train, false> �
 StopSignal = < set_to_stop, set_to_go, false > �
 SignalVisible = < clear_signal, obstruct_signal, true > �
 DriverResponsive = < driver_responds, driver_ignores, true > �

Goal: �
 StopSignal ⇒ o TrainStopped�
�
Negated Obstacle Condition: �
 o (¬StopSignal ⋁ DriverResponsive)�

O2	 =	 ◊	 (StopSignal ⋀ ¬ SignalVisible)�

Getting new domain properties �
into the loop �

u  WHEN? After obstacles are generated�

u  WHY? �
–  expand scope of obstructions�
–  refine obstacles�

u  Focussed, goal-directed …�

–  for other goal obstructions: look for properties T ⇒ N �
N: necessary condition for target of goal C ⇒ Θ T�

–  for obstacle refinement: look for properties S ⇒ O
S: sufficient condition for obstacle to be refined�

Benefits of combining
model checking & inductive learning

�
u  Tool-supported approach for incremental generation
 of domain-complete set of obstacles

–  no user intervention required for example provision �

u  Domain-feasibility of generated obstacles granted for free�
–  no need for separate check as in [Lamsweerde&Letier 2000]

u  Assists in eliciting relevant domain properties�

u  Can be integrated with generation of operational reqs
[Alrajeh et al 2009] �

u  Evaluation on LAS case study
–  generation of all formal obstacles that were derived

manually in [van Lamsweerde&Letier00], and more

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model elements
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

Brief recall:
risk management at RE time

Obstacle
identification

Obstacle
assessment

Obstacle
resolution

u  Assessment is aimed at focussing resolution on critical obstacles
 [Cailliau & van Lamsweerde, RE’2012]

resolution =
revised goal model
with countermeasures

likely?
severe, likely consequences?

Obstacle assessment calls for
a probabilistic framework

u  Goals most often will be satisfied only partially
–  degree of goal satisfaction depends on

 probability of obstructing obstacles

u  Goals are sometimes stated probabilistically
–  e.g. ORCON standards …

 “ambulances shall be on incident scene within 14 minutes
 in 95% of cases”

u  Severity of consequences then depends on difference between
–  required degree of satisfaction
–  estimated probability of satisfaction

Probabilistic goals

u  Proba of satisfaction of C ⇒ Θ T : proportion between …
–  # possible behaviors satisfying C, Θ T�
–  # possible behaviors satisfying C

e.g. P (Achieve [AmbulanceMobilizedWhenAllocated]) =
 # behaviors where allocated ambulance is mobilized
 # behaviors where ambulance is allocated

u  Two goals are dependent if the set of behaviors non-vacuously

satisfying one is also non-vacuously satisfying or denying the other
–  in goal model: if one of them is descendant or conflicting
–  subgoals are independent in complete, consistent, minimal

refinements:
 P (SG1 | SG2) = P (SG1 | ¬ SG2) = P (SG1),
 P (SG2 | SG1) = P (SG2 | ¬ SG1) = P (SG2)

Probabilistic goals (2)

u  Required degree of satisfaction (RDS) of G :
 minimal admissible P (G)

 (obtained by req elicitation)

–  specifiable in probabilistic TLs
 e.g. C ⇒ Pr≥RDS [ΘT] [Kwiatkowska et al 2002]

–  G is probabilistic if 0 < RDS (G) < 1

u  Estimated proba of satisfaction (EPS) of G :
 P (G) computed from the goal/obstacle models from
 estimates on leaf nodes

u  Severity of violation of G :
 SV (G) = RDS (G) – EPS (G)

Probabilistic goals (3)

u  Desirable conditions extended to probabilistic goals :

 P (G | Dom) > 0 domain-consistency

 P (G | SG1, …, SGn, Dom) > 0 complete refinement

 P (SG1, …, SGn | Dom) > 0 consistent refinement

 P (G | SG1, …, SGi-1, SGi+1, ..., SGn, Dom)
 < P (G | SG1, …, SGn, Dom) minimal refinement

Probabilistic obstacles

u  Probability of obstacle : proportion between …
–  # possible behaviors satisfying obstacle condition�
–  # possible system behaviors

e.g. G: AmbulanceAllocated ⇒ ◊≤2 min AmbulanceMobilized

 P (◊ (AmbulanceAllocated ∧ o≥2 min ¬ CrewResponsive) =

 # behaviors with ambulance allocated without 2-min response
 # possible system behaviors

Probabilistic obstacles (2)

u  Conditions extended for probabilistic (sub-)obstacles:

P (¬ G | O, Dom) > 0 potential obstruction

P (O | Dom) > 0 domain consistency

P (O | SOi) > 0 for all SOi entailment

P (O | ¬ SO1, …, ¬ SOn, Dom) = 0 domain completeness
 e.g.
 P (MobilizedAmbulanceNotOnScene |
 ¬ StuckInTrafficJam, ¬ AmbulanceLost, ¬ AmbulanceBrokenDown)
 = 0 ?

P (SOi | SOj) = P (SOi | ¬ SOj) = P (SOi),
 P (SOj | SOi) = P (SOj | ¬ SOi) = P (SOj) independence

Assessing obstacles

u  For leaf obstacles: use statistical data, domain expertise

–  e.g. P (◊ (AmbulanceMobilized ∧ o ¬ CrewInFamiliarArea):
 occurs in 20% of cases

u  For parent obstacle: up-propagation through refinement tree

–  AND-refinement: P (O) = P (SO1) × P (SO2) × P (O | SO1, SO2)
–  OR-refinement: P (O) = 1 – (1 – P (SO1) × P (O | SO1))

 × (1 – P (SO2) × P (O | SO2))
 (for complete refinement in independent obstacles)

u  Up-propagation until root ¬ G is reached

Assessing obstacles: example

MobilizedAmbulance Not
AtIncident InTime

AmbulanceLost

AmbulanceStuck
InTrafficJam

Ambulance
BrokenDown

 AmbulanceCrew

NotInFamiliarArea

In-carGPS
NotWorking

Ambulance At Incident
InTime WhenMobilized

Assessing obstacles: example

0.2	
 0.1	

P (AmbulanceLost | NotInFamiliarArea, GPS NotWorking)) = 0.95

MobilizedAmbulance Not
AtIncident InTime

AmbulanceLost

AmbulanceStuck
InTrafficJam

Ambulance
BrokenDown

 AmbulanceCrew

NotInFamiliarArea

In-carGPS
NotWorking

Ambulance At Incident
InTime WhenMobilized

Assessing obstacles: example

0.2	
 0.1	

P (AmbulanceLost | NotInFamiliarArea, GPS NotWorking)) = 0.95

0.019	

MobilizedAmbulance Not
AtIncident InTime

AmbulanceLost

AmbulanceStuck
InTrafficJam

Ambulance
BrokenDown

 AmbulanceCrew

NotInFamiliarArea

In-carGPS
NotWorking

Ambulance At Incident
InTime WhenMobilized

Assessing obstacles: example

0.2	
 0.1	

P (AmbulanceLost | NotInFamiliarArea, GPS NotWorking)) = 0.95

0.019	

0.02	
 0.005	

P (NotInTime | Lost) = 0.99
P (NotInTime | Jam) = 0.98
P (NotInTime | Broken) = 1

MobilizedAmbulance Not
AtIncident InTime

AmbulanceLost

AmbulanceStuck
InTrafficJam

Ambulance
BrokenDown

 AmbulanceCrew

NotInFamiliarArea

In-carGPS
NotWorking

Ambulance At Incident
InTime WhenMobilized

Assessing obstacles: example

0.2	
 0.1	

P (AmbulanceLost | NotInFamiliarArea, GPS NotWorking)) = 0.95

0.019	

0.02	
 0.005	

P (NotInTime | Lost) = 0.99
P (NotInTime | Jam) = 0.98
P (NotInTime | Broken) = 1

0.043	

MobilizedAmbulance Not
AtIncident InTime

AmbulanceLost

AmbulanceStuck
InTrafficJam

Ambulance
BrokenDown

 AmbulanceCrew

NotInFamiliarArea

In-carGPS
NotWorking

Ambulance At Incident
InTime WhenMobilized

Assessing obstacle consequences

u  Obstacle consequence = lower degree of satisfaction of …
–  obstructed leaf goal,
–  its parent/ancestor goals

u  Propagation from root obstacle to obstructed leaf goal:
 1 - P (LG) = P (RO) × P (¬ LG | RO)

 Ambulance At Incident

InTime WhenMobilized

MobilizedAmbulance Not
AtIncident InTime

0.043	

0.957	

Assessing obstacle consequences:
from obstructed leaf goals to higher-level goals

u  Up-propagation through goal refinement graph …
–  for single system with complete AND-refinements:
 P (G) = P (SG1, SG2)
 + P (SG1, ¬ SG2) × P (G | SG1, ¬ SG2)
 + P (SG2, ¬ SG1) × P (G | SG2, ¬ SG1)

–  further simplification for refinement patterns
 (complete, minimal, consistent => independent subgoals)

 P(G) = P(SG1) × P(SG2) milestone-driven
 P(G) = P(CS) × P(SG1) + (1 - P(CS)) × P(SG2) case-driven

u  Two kinds of consequence assessment
–  global: severity SV (G) computed from all leaf goal obstructions
–  local: single leaf goal obstruction, all other leaf goals with P(LG) = 1

Global impact analysis: example

Ambulance AtIncident InTime
When IncidentReported

Ambulance Allocated
When IncidentReported

Ambulance AtIncident
InTime When Allocated

Ambulance Mobilized
When Allocated

Ambulance AtIncident
InTime When Mobilized

AllocatedAmbulance
Mobilized When OnRoad

AllocatedAmbulance
Mobilized When AtStation

AllocatedAmbulance
Mobilized ByFax

AllocatedAmbulance
Mobilized ByPhone

0.957	

0.98	

0.98	

0.95	
 0.90	

Global impact analysis: example

Ambulance AtIncident InTime
When IncidentReported

Ambulance Allocated
When IncidentReported

Ambulance AtIncident
InTime When Allocated

Ambulance Mobilized
When Allocated

Ambulance AtIncident
InTime When Mobilized

AllocatedAmbulance
Mobilized When OnRoad

AllocatedAmbulance
Mobilized When AtStation

AllocatedAmbulance
Mobilized ByFax

AllocatedAmbulance
Mobilized ByPhone

0.957	

0.98	

0.98	

0.95	
 0.90	

0.995	

Global impact analysis: example

Ambulance AtIncident InTime
When IncidentReported

Ambulance Allocated
When IncidentReported

Ambulance AtIncident
InTime When Allocated

Ambulance Mobilized
When Allocated

Ambulance AtIncident
InTime When Mobilized

AllocatedAmbulance
Mobilized When OnRoad

AllocatedAmbulance
Mobilized When AtStation

AllocatedAmbulance
Mobilized ByFax

AllocatedAmbulance
Mobilized ByPhone

0.957	

0.98	

0.98	

0.95	
 0.90	

0.995	

0.984	

Global impact analysis: example

Ambulance AtIncident InTime
When IncidentReported

Ambulance Allocated
When IncidentReported

Ambulance AtIncident
InTime When Allocated

Ambulance Mobilized
When Allocated

Ambulance AtIncident
InTime When Mobilized

AllocatedAmbulance
Mobilized When OnRoad

AllocatedAmbulance
Mobilized When AtStation

AllocatedAmbulance
Mobilized ByFax

AllocatedAmbulance
Mobilized ByPhone

0.957	

0.98	

0.98	

0.95	
 0.90	

0.995	

0.984	

0.946	

Global impact analysis: example

Ambulance AtIncident InTime
When IncidentReported

Ambulance Allocated
When IncidentReported

Ambulance AtIncident
InTime When Allocated

Ambulance Mobilized
When Allocated

Ambulance AtIncident
InTime When Mobilized

AllocatedAmbulance
Mobilized When OnRoad

AllocatedAmbulance
Mobilized When AtStation

AllocatedAmbulance
Mobilized ByFax

AllocatedAmbulance
Mobilized ByPhone

0.957	

0.98	

0.98	

0.95	
 0.90	

0.995	

0.984	

0.946	

0.928	
 EPS = 92.8% �
RDS= 95% �
SV = 2.2%	

Identifying critical
obstacle combinations

u  Aim: focus resolution on most problematic leaf obstacles

u  Multi-criteria optimization problem
–  minimal sets of leaf obstacles maximizing severity of goal

violations ?
u  Brute force solution

–  generate all leaf obstacle combinations
–  compute SV (G) for each obstructed G

 weighted according to goal priority
–  sort leaf obstacle combinations by severity

u  Optimized techniques available for generating Pareto fronts
[Kung et al, 1975]

M

Identifying critical obstacle combinations: example M

TABLE I. Violation severity for
Achieve [AmbulanceOnSceneInTimeWhenIncidentReported]

Amb.
Lost

Amb.
Stuck In
Traffic

Amb.
Broken
Down

EPS RDS SV

1 1 1 92,77%

95%

2,23%

1 1 0 93,20% 1,80%

0 1 1 94,54% 0,46%

1 0 1 94,61% 0,39%

0 1 0 95,02% -0,02%
1 0 0 95,10% -0,10%

0 0 1 96,44% -1,44%
0 0 0 96,92% -1,92%

Fig. 3. Obstacle combination ranking by violation severity

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model elements
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

Resolving obstacles

u  At RE time: integrate countermeasures in the goal model
–  new or modified goals in goal model
–  often to be refined

u  For every critical obstacle ...
•  explore alternative resolutions
•  select “best” resolution based on ...

 likelihood/severity of obstacle
 non-functional/quality goals in goal model

u  At system run-time: obstacle monitoring, run-time resolution
(non-severe, occasional obstacles) [Feather et al, 1998]

Obstacle
identification

Obstacle
assessment

Obstacle
resolution

Exploring alternative countermeasures

By use of model transformation operators
–  encode resolution tactics

u  Goal substitution:

 consider alternative refinement of parent goal
 to avoid obstruction of child goal

G

alternative less exposed to risk

Goal substitution: example

MovingOnRunway ⇒ o MotorReversed

MovingOnRunway
 ⇔ WheelsTurning

 WheelsTurning
 ⇒ o MotorReversed

 NOT
MovingOnRunway
⇔ WheelsTurning

 Aquaplaning

Goal substitution: example

MovingOnRunway ⇒ o MotorReversed

MovingOnRunway
 ⇔ WheelsTurning

 WheelsTurning
 ⇒ o MotorReversed

MovingOnRunway ⇔
PlaneWeightSensed

 PlaneWeightSensed
 ⇒ o MotorReversed

 NOT
MovingOnRunway
⇔ WheelsTurning

 Aquaplaning

Exploring alternative countermeasures (2)

u  Agent substitution: consider alternative responsibilities

for obstructed goal so as to make obstacle unfeasible

 OnBoard
TrainController

Maintain [SafeAccelerationComputed]

 NOT
Computed

 Acceleration Safe

Exploring alternative countermeasures (2)

u  Agent substitution: consider alternative responsibilities

for obstructed goal so as to make obstacle unfeasible

 OnBoard
TrainController

Maintain [SafeAccelerationComputed]

 VitalStation
Computer

 NOT
Computed

 Acceleration Safe

Exploring alternative countermeasures (3)

u  Goal weakening: weaken the obstructed goal so that the
weaker version is no longer obstructed

–  for goal specs A ⇒ C: add conjunct in A
 add disjunct in C

Maintain [TrafficControllerOnDutyOnSector]

 NOT
SectorController

OnDuty

Exploring alternative countermeasures (3)

u  Goal weakening: weaken the obstructed goal so that the
weaker version is no longer obstructed

–  for goal specs A ⇒ C: add conjunct in A
 add disjunct in C

Maintain [TrafficControllerOnDutyOnSector]

 NOT
SectorController

OnDuty Maintain [TrafficControllerOnDutyOnSector]
or WarningToNextSector

Exploring alternative countermeasures (4)

u  Obstacle prevention:

–  introduce new goal: Avoid [obstacle]

–  to be further refined

–  standard resolution tactics for security threats

 Avoid [VulnerabilityCondition]

AccelerationCommand

Corrupted
Avoid [AccelerationCommandCorrupted]

CommandReceived
SafelyByTrain

Exploring alternative countermeasures (5)

u  Goal restoration:
 enforce goal’s target condition as obstacle occurs

 => new goal: O ⇒ ◊ TargetCondition

 Resource NOT
ReturnedInTime

Achieve
[ResourceReturnedInTime

Achieve [ReturnedWithFine
If Not InTime]

Exploring alternative countermeasures (6)

u  Obstacle reduction: reduce obstacle likelihood
 by ad-hoc countermeasure

Exploring alternative countermeasures (7)

u  Obstacle mitigation:

 introduce new goal to mitigate consequences of obstacle

–  Weak mitigation:
 new goal ensures weaker goal version when obstructed

InformedAndConvenient

And NOT Attends

 Achieve [Attendance If Informed
And MeetingConvenient]

 Achieve [Attendance If Informed
And MeetingConvenient

OR ImpedimentNotified]

Exploring alternative countermeasures (7)

u  Obstacle mitigation:
 introduce new goal to mitigate consequences of obstacle

–  Strong mitigation:
 new goal ensures parent of goal when obstructed

Resolution goals must then be further refined in the goal model

Outdated
Speed/PositionEstimates

 Maintain [Accurate
Speed/PositionEstimates]

 Avoid [TrainCollision
WhenOutDatedTrainInfo]

Avoid [TrainCollision]

Strong mitigation: example

PumpOn If HighWater

 PumpOn If HighWaterDetected

HighWaterDetected

WaterPumped
Out If PumpOn

SumpPumpedOut If HighWater

 LimitedWaterFlow

PumpOn
 Iff SwitchOn

PumpSwitchOn
 If HighWaterDetected

HighWater Not Detected

IncorrectOutput
FromController

HighWaterDetected And
Not PumpSwitchOn

SwitchOn And
Not PumpOn

ExcessiveWaterFlow

ControllerOutput
Not InTime

WaterSensor
Failure

Sump
CloggedUp

 Pump

Failure

highWaterSignal
Corrupted

Avoid [MinersInFloodedMine]

MineEvacuatedIfCriticalWater

 MineEvacuated

If WaterAlert

Def There is a sump with water
flow exceeding the worst-case
figure of X litres per hour.

PumpOn And
Not SwitchOn

…

 MinersAlerted
If CriticalWater

strong mitigation

 WaterAlarm
If CriticalWater

 MinersAlerted
If WaterAlarm

...

An interesting perspective:
obstacle resolution as theory revision

u  Given:
–  B: knowledge base (domain properties)
–  E: examples (traces)
–  M: mode declaration (language bias)
–  RM: a rule space
–  R ⊆ RM: a revisable theory (goal model)

u  Find:
–  R’ : a revised theory with distance c (R,R’)

•  obtained by deleting rules, adding/deleting & conditions
to/from rules

•  R’ ⊆ RM
•  B ∪ R’ ⊨ E
•  c (R, R’) is minimal

Selecting best resolution

u  Evaluation criteria for comparing alternative resolutions ...
–  number of obstacles resolved by the alternative
–  their likelihood & criticality
–  the resolution’s contribution to soft goals
–  its cost

u  May be based on estimates of ...
–  risk-reduction leverage
–  qualitative/quantitative contribution to soft goals [Mylopoulos et al]

u  If obstacle not eliminated, multiple alternatives may be taken
 e.g. FineCharged + ReminderSent (for book copies not returned in time)

u  Selected alternative => new/weakened goal in goal model
–  resolution link to obstacle for traceability
–  weakening may need to be propagated in goal model
–  to be refined & checked for conflicts & new obstacles

Outline
u  Introduction: requirements engineering and risk management
u  Background: goal-oriented model building & analysis

–  Basic concepts & modeling technique
–  Specifying model elements
–  Goal refinement and operationalization

u  Obstacle analysis for risk-driven RE
u  Obstacle identification

–  Regressing goal negations
–  Reusing obstruction patterns
–  Combining model checking & inductive learning

u  Obstacle assessment
–  Probabilistic goals & obstacles
–  Assessing the likelihood & severity of obstacles

u  Obstacle resolution for a more complete goal model
u  Beyond unintentional obstacles: threat analysis

ItemSent ⇒
ItemPaid

Threat analysis for more secure model

ItemOrderedByBuyer ⇒ ◊≤7d ItemReceivedByBuyer

ItemOrdered ⇒
◊≤2d ItemPaid

 ItemPaid ⇒
◊≤2d ItemSent

ItemPaid
⇒ ◊≤1d BELIEFS(ItemPaid)

 ItemSent ⇒
 ◊≤3d ItemReceived

 BELIEFS(ItemPaid)
⇒ ◊≤1d ItemSent

Seller

ItemPaid ⇒
◊≤8h PaymentReceived

PaymentReceived ⇒
◊≤8h NotificationSent

NotificationSent ⇒
◊≤8h NotificationReceived

NotificationReceived ⇒
o BELIEFS(ItemPaid)

Seller

ShippingCo

ItemSent ⇒
ItemPaid

Threat analysis for more secure model

ItemOrderedByBuyer ⇒ ◊≤7d ItemReceivedByBuyer

ItemOrdered ⇒
◊≤2d ItemPaid

 ItemPaid ⇒
◊≤2d ItemSent

ItemPaid
⇒ ◊≤1d BELIEFS(ItemPaid)

 ItemSent ⇒
 ◊≤3d ItemReceived

 BELIEFS(ItemPaid)
⇒ ◊≤1d ItemSent

Seller

ItemPaid ⇒
◊≤8h PaymentReceived

PaymentReceived ⇒
◊≤8h NotificationSent

NotificationSent ⇒
◊≤8h NotificationReceived

NotificationReceived ⇒
o BELIEFS(ItemPaid)

Seller

ShippingCo

ItemSent
∧ ¬ ItemPaid

ItemSent ⇒
ItemPaid

Threat analysis for more secure model

ItemOrderedByBuyer ⇒ ◊≤7d ItemReceivedByBuyer

ItemOrdered ⇒
◊≤2d ItemPaid

 ItemPaid ⇒
◊≤2d ItemSent

ItemPaid
⇒ ◊≤1d BELIEFS(ItemPaid)

 ItemSent ⇒
 ◊≤3d ItemReceived

 BELIEFS(ItemPaid)
⇒ ◊≤1d ItemSent

Seller

ItemPaid ⇒
◊≤8h PaymentReceived

PaymentReceived ⇒
◊≤8h NotificationSent

NotificationSent ⇒
◊≤8h NotificationReceived

NotificationReceived ⇒
o BELIEFS(ItemPaid)

Seller

ShippingCo

ItemSent
∧ ¬ ItemPaid

BELIEFS(ItemPaid) ¬ ItemPaid

NotificationReceived

Attacker
♦≤1d FakeNotificSent

anti-model

anti-goals

attacker capabilities

deontic constructs

Model completed with countermeasures

ItemOrderedByBuyer ⇒ ◊ ItemReceivedByBuyer

ItemOrdered ⇒
◊ ItemPaid

 ItemPaid ⇒
◊ ItemSent

ItemPaid
⇒ ◊ BELIEF(Seller, ItemPaid)

 ItemSent ⇒
 ◊ ItemReceived

...
 BELIEF(Seller, ItemPaid)

⇒ ◊ ItemSent

Seller

ItemPaid ⇒
◊ PaymentReceived

PaymentReceived ⇒
◊ NotificationSent

NotificationSent ⇔
◊ NotificationReceived

Paypal

NotifReceived ⇒
◊ ConfirmRequested

ConfirmRequested
∧ PaymentConfirmed

⇒ ◊ BELIEFS(ItemPaid)

ConfirmRequested
 ∧ PaymentReceived

⇒ ◊ PaymentConfirmed

Seller
Achieve

CorrectBelief

•  Modeling terrorist threats (huge anti-goal model)
•  For on-board detection & reaction system

Industrial application:
Security of Aircraft in the Future European Environment

 (External threats)

Threats against crew & passengers

Threats from baggage area

 with Airbus,
British Aerospace,
SAGEM, Marconi, ...

Conclusion

u  It is important to verify that your software implements
its specs correctly... BUT ...

u  ... are those specs meeting the software requirements
(including non-functional ones) ?

u  ... are those requirements meeting the system’s goals ?
… under realistic assumptions ?

u  ... are such goals, requirements & assumptions complete,
consistent, adequate and realistic ?

this is a critical though still largely unexplored area
with many challenging issues for formal methods

u  Problem-oriented abstractions, declarative specs are needed
for ... communication with stakeholders
 early, incremental analysis of partial models

u  Systematic techniques are needed for model construction
–  from high-level goals to detailed operational specs
 from detailed operational specs to high-level goals

–  appropriate mix of deductive & inductive techniques

u  Importance of capturing the right assumptions

 (+ satisfaction args)

Conclusion

u  Be pessimistic from beginning about software and
environment, anticipate what could go wrong
 hazards, threats, conflicts, …

u  Multi-button approach
–  semi-formal

for navigation, traceability ... and accessibility

–  formal, when and where needed
for precise, automated reasoning on model pieces

Rigorous approaches needed
Many opportunities for interesting research!

Conclusion

Thanks ...

u  to the KAOS crew at UCL, CEDITI and CETIC as
researchers, consultants, or tool developers

C. Damas, A. Cailliau, A. Dardenne, R. Darimont,

R. De Landtsheer, E. Delor, B. Lambeau, E. Letier,

P. Massonet, C. Ponsard, A. Rifaut, H. Tran Van

u  to Steve Fickas and his group at Univ. Oregon

u  to Jeff Kramer and his group at Imperial College

u  to the EU & Region of Wallonia for significant funding of
those efforts

Much, much more info in ...

Wiley, 2009

Fruitful bedtime reading

A. van Lamsweerde & E. Letier, “Handling Obstacles in Goal-Oriented
Requirements Engineering”, IEEE Transactions on Software Engineering,
Special Issue on Exception Handling, Vol. 26, No. 10, October 2000.

D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo, S. Uchitel, Generating
Obstacle Conditions for Requirements Completeness, Proc ICSE’2012 - 34th
Intl Conf on Software Engineering, Zurich, June 2012, ACM-IEEE.

A. Cailliau & A. van Lamsweerde, A Probabilistic Framework for Goal-Oriented
Risk Analysis, Proc. RE’2012: 20th IEEE Intl Conf. on Requirements
Engineering, Chicago, Sept. 2012.

A. van Lamsweerde, “Elaborating Security Requirements by Construction of
Intentional Anti-Models”, Proc ICSE’04 - 26th Intl Conf on Software
Engineering, Edinburgh, May 2004, ACM-IEEE, 148-157.

A. van Lamsweerde, R. Darimont & E. Letier, Managing Conflicts in Goal-Driven
Rquirements Engineering, IEEE Transactions on Software Engineering, Vol. 24
No. 11, November 1998, pp. 908 - 926.

Fruitful bedtime reading (2)

R. Darimont & A. van Lamsweerde, “Formal Refinement Patterns for Goal-Driven
Requirements Elaboration”. Proc. FSE-4 - Fourth ACM Conf on Foundations of
Software Engineering, San Francisco, Oct. 1996, 179-190.

E. Letier & A. van Lamsweerde, “Agent-Based Tactics for Goal-Oriented
Requirements Elaboration”, Proc. ICSE'2002 - 24th Intl Conf on Software
Engineering, Orlando, May 2002, IEEE CS Press, 83-93.

E. Letier & A. van Lamsweerde, “Deriving Operational Software Specifications
from System Goals”, Proc FSE'2002 - 10th ACM Conf on the Foundations of
Software Engineering, Charleston (South Carolina), November 2002.

A. van Lamsweerde and L. Willemet, Inferring Declarative Rquirements
Specifications from Operational Scenarios, IEEE Transactions on Software
Engineering, Vol. 24 No. 12, December 1998, pp. 1089 - 1114.

E. Letier and A. van Lamsweerde, “Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering”, Proc FSE’04, 12th ACM Intl Symp.
Foundations of Software Engineering, Newport Beach (CA), Nov. 2004, 53-62.

