Marktoberdorf Summer School
August 2012

‘g Requirements engineering (RE), roughly ...

¢

Identify & analyze problems with an existing system
(system-as-is),

Identify & evaluate objectives, opportunities, options for new
system (system-to-be),

Identify & define functionalities of, constraints on,
responsibilities in system-to-be,

Specify & organize all of these in a requirements document to
be maintained throughout system development & evolution

System = software + environment
(people, devices, existing software)

The scope of RE: WHY, WHAT, WHO

WHY ? system objectives
domain
SEEA

-

operationalization

v

requirements;

WHAT ? assumptions
responsibility
assignment
WHO ? [_] A A
Ko

%" Risks must be anticipated at RE time

¢ Risk = uncertain factor whose occurrence may result in loss
of satisfaction of a corresponding objective

A

e.g. a passenger forcing doors opening while train moving ==
a meeting participant not checking email regularly @

¢ A risk has...
- a likelihood of occurrence,

- one or more undesirable consequences

e.g. passengers falling out of ftrain moving with doors open

¢ Each risk consequence has ...

- a likelihood of occurrence if the risk occurs
- a severity: degree of loss of satisfaction of objective

3 i clola s 5 5 wninls
TR TN E R R NN R R Y T AW

Tancolsor DumCose vinitesna
sl ez o B vorom s
‘Sems Elock D stanceMa ntsines: IS

Ic
NoTrainsOn Same Block
(DoorsClosadIFFronZaroSpssd

BlockSpeodimited

oisioci

e

Wessure
o .

Blockspesd - Real

StationBlock

® & & 6 ¢ O o o

2@ Model building at RE time
should be goal-oriented

To enable ...

satisfaction arguments Specs, Assumptions |- Goal

completeness & pertinence of the model

early, incremental analysis

model refinement & synthesis (deductive, inductive)

reasoning about alternative options

validation by stakeholders
backward traceability

generation of ...

- requirements document

- architectural fragments

- runtime reqirements monitors

Requirements

)
v : : : :
Goal satisfaction requires agent cooperation

¢ Agent: active component, controls behaviors
software-to-be, device, human role, existing sw

TrainController, Passenger, SpeedSensor, TrackingSystem
The more fine-grained a goal,
the fewer agents required for its satisfaction
SafeTransportation vs. DoorsClosedWhileMoving

¢ Requirement: goal assigned to single software agent
Train.measuredSpeed = 0 Train.DoorsState = "closed"

¢ Expectation: goal assigned to single environment agent
(prescriptive assumption)

Train.measuredSpeed = 0 Train.Speed =0

Behavioral goals prescribe sets of behaviors
declaratively

WhileMoving

L]

/ DoorsClosed /

Current Target
Condition Condition

ﬁ Behavioral goals:
subtypes and specification patterns (2)

¢ Maintain [GoodCondition]:
[if CurrentCondition then] always GoodCondition
always (if CurrentCondition then GoodCondition)

Maintain [DoorsClosedWhileMoving]: = E |
always (if a train is moving then its doors are closed)

Maintain

Current Good Good Good

What models for RE ?

le Edt View Tools Documert Vindows Help

Do @ @ 2 %D 62 cllhaldle B d e sk zoom: [160 | %

SafeTransportation

2

@
NoTrainCollision DoorClosed WhileMoving BlockSpeedLimited
ZI 57

R] k
Fle Edt View Tools Document Windows Help

B S 868D 82 ecBal@ ol @S85 P Olzombnx
[BL (Obstacie) Obstacies to train stops ARF7

TrainStops IF StopSignal
N

. MovinglFFnonZeroSpeed
Same Block DistanceMaintained Measure g =
(Goal) NoTrainsOn Same
Block diagram

NoStopAtStopSignal
v,

IS X

SignalNotVisible BrakeSystemDown
=

Friee $ DR LN EOOOPD

Properties |

o | ns:’!aIL RegularResponsivenessCheck
TrainController a:keutf@

[ioariea | R ot oov |
4 SEBYOMEBE: 72

advanced features
File Edit View Tools Document Windows Help with advanced features 18] x|
B S B Bl (%D 8ld e lagldaelBR S & % (D O zomhol s Fle Edt View Tools Document Windows Help

‘ B = Bla 2% b 02 e B g B|[a[E ® & & % X O O [zoom (53] %
Fncksgewew |

[EL cAgent) TrainCortroller (Responsibilty Diagram) At-F1
Concept Index.]

Gl CiassDiagrem At-F5

NoTrainsOn Same Block
DoorsClosedIFFnonZeroSpeed
Measure

BlockSpeedLimited

FastRun When GoSignal
WarningTrainStopping
BlockSpeedLimited

WarningTrainLeaving

InfoCompaniesAthextStorl

T
MeasuredSpeed : Real
BlockSpeed : Real J‘

doorsState : String

TrainController

Priwe 0P QLR EOOOPN
Ppiwew § IDPQLLL I EOCOID

StopSignal IFF TrainOnBlock TrainArrivingDisplayed

StationBlock DoorsClosedIFFnonZeroSpeed
WMeasure

Name | value
P S |

ockeats 11

EsponsivenessCheck

el el el e P = e R e

[[icoinea | [MERN oo &
Rstart|||) & 5 By || SebrausT-reos [l[specs/train/TrainSys... [=Microsoft PowerPoint - [R.... G B AN O 7ae

What models for RE ?

Operations

| 8. [specs/train/TrainSystem-REO4.0b] - Cediti Objectiver 1.5.2 with advanced features |8 x|

DoorClosed
WhileMoving

Fle Ecit View Tools Document Windows Help

B s 0 Bl 2% b al2deRaslala
“Packege view_|(MGaeINEw] 3= [NIEL com operationsizetion atr1

1-TrainSystemode!
© @ SourceDocuments

(Agent) TrainController (Responsibilty Diat
(Agent) TrainDriver (Responiibilty Digrar
(Gasl) Fastlourney diagram

(Goal) FunctionaiGoals. =
(Goal) High-level goals g
(Goal) NoTrainsOn Same Block diagram =
(Goal) Operstionalization =4
(Goal) QoS-Goals
(Goal) SafetyGoals =
(Obstacle) Obstacles to train stops. a
ClassDisgram o
Fastiourney diagram (Text Expianation)
&7 Blockspeedinited ©
‘ZFoBlockSpeedLimited “Concerns" Train (=]
©'$ BlockSpeedLimited "Respansibilty” TrainC =
R BrakeSystemDawn CloseDoors OpenDoors
&7 DoorClosed WhileMoving <
© 3, DoorClosedt WhieMoving “Refinemert” Do = 3 FormaReare ofto Openboors:
£&F DoorsClosediFFnonZeroSpeedieasure Lad
‘FaDoorsClosediFFnonZeroSpeedheasure Cf %
@' DoorsClosedFFronZeraSpeedvisasure "R}
= DriverUnresponsive =l =
Z > oo
A to OpenDoors [OperationalizationActionSon] A,
Properties >
Neame. Value
Forma I i
FormaiReaTri
FormalReapre lr.State = Stoppect B
Reapost
ReaTri |
Reare [- ‘

[][todiiea | I ot 1o |&-
Mstar ||| (] @ 51 @B || [EMcrosoft Powerport - [v... | flFAUST-REOS |[Dspecs/train/Traimsys... VS LBO USEE: 10e

Behaviors - Behaviors -

Scenarios State machines
~Positive Scenario . [— ,,._. 1

Train Controller Train Actuator/Sensor Passenger i

start

] alarm pressed
alarm propagated e
Y o&-

emergency stop CE == —
==ir=
/J9
j—y

emergency open
. . . e —— —— —— —— _Jehime-s . T —— — —
P Ep— - e atincrimen
S [—oees aoet =T
] L L ===] H C = T s G

AYAAYS
\

acint@iarel besp-st SCinccni 3
1 _J

The focus here is on model building & analysis
at RE time

-
N

——a

(d s

. @ N

Interviews documents
L\

existing systems

| | |
|
analysis modflmg

Objecti

generation of RE deliverables

SafeTransportation

specs/train/TrainSystem-REO4.0b] - Cediti Objectiver 1.5.2 with advanced features

¢ Edt View Tools Document Windows Help

S B B|GE B A2 eRg BB HFSE K KL S omhs]%

Iﬂ. (Goal) SafetyGoals AR-F6
SafeTransportation

A

o AND-refinement

NoTrainCollision DoorClosed WhileMoving BlockSpeedLimited
Al OR 0
e © refinement S

NoTrainsOn WorstCaseStopping DoorsClosedIFFnonZeroSpeed MovingEFrionZeroSpeed
Same Block DistanceMaintained Measure
(Goal) NoTrainsOn Same
Block diagram

o
7
o
=
=
Q
:

g

A,
=

TrainController

. [specs/train/TrainSystem-RE04.0b] - Cediti Objectiver 1.5.2 with advanced features -7 x|

File

Edt ‘iew Tools Document Windows Help

B s B B|l¢s%b0|2elBbglala

(Package View || Model View |
=j=]=}=) |

@ @ 1-TrainSystemMoel

@ (F sourceDocuments
Is| (Agent) TrainController (Responsibility Diagram
Eﬂ (Agent) TrainDriver (Responsibilty Diagram)
Ea (Goal) FastJourney diagram
B| (Goal) FunctionalGoals
%] (Goal) High-level goals
E! (Goal) NoTrainsOn Same Block diagram
B| (Goal) Operationalization
B| (Goal) QoS-Goals
B| (Goal) SafetyGoals
Eﬂ (Ohstacle) Obstacles to train stops
B| ClassDiagram
E Fastdourney diagram (Text Explanation)
L7 BlockSpeedLimited
oBlockSpeedLimited "Concerns" Train
Log é BlockSpeedLimited "Responsibilty" TrainCortro
@@ BrakeSystemDown
7 DoorClosed WhileMoving
[og] A DoorClosed WhileMoving "Refinement" DoorsCl
L7 DoorsClosedFFhonZeroSpeedieasure

oDoorsClosedFFnonZeroSpeedMeasure "Conce |

[

L7 MoTrain eBlock [Goa] ey

Proggflies ' Docurmerts |

Name l Value

ame MoTrainsOn Same Block
Def Each block may contain at most
SSUE
Pattern Avoid i
Category Safety i
Priority High b

rmalDef

|
¢

oo 1 28 P IO0DOCODQ 0L GO

@. (Goal) NoTrainsOn Same Block diagram Al-F1

(Goal) SafetyGoals

y
TrainStops IF StopSignal y |

TrainDriver

[[Modified

start || |] @ SIS ElMicrosoft PowerPoint - [R.. | §ghFauST-RED4 |[Ttspecs train/Trainsys.d

WL E 0 VBBEE 75

rain/TrainSystem-REO4.0b] - Cediti Objectiver 1.5.2 with advanced features

Yiew Tools Document Windows Help
B¢ 2/¥n a2 ellhalB|a/E ##& &k KL

Iﬂ (Goal) FastJourney diagram AR-F1

Goal refinement until single assignments

FastJourney NoTrainsOn Same Block
Y

dex

Jemos

1Systemilodel
wrceDocuments

oal) FastJourney diagram

oal) FunctionalGoals

oal) High-level goals

oal) NoTrainsOn Same Block d
oal) Operationalization

oal) QoS-Goals

oal) SafetyGoals

bstacle) Obstacles to train stog
assDiagram

istdourney diagram (Text Expla
ockSpeedLimited
ockSpeedLimited "Concerns" T
ockSpeedLimited "Responsibilit
akeSystemDown

wrClosed WhileMoving
wrClosed WhileMoving "Refine
wrsClosedFFnonZeroSpeedhs
wrsClosedFFnonZeroSpeedhs
wrsClosedFFnonZeroSpeedhs
iverUnresponsive

:'astJourney diagram [Diagram] i
TrainDriver TrainController

OR-assignment

FastRun When GoSignal Signal SetToGo

Briwews 3 D@ QUL L E0CIOTJI0

SafeTransportation

Edit “iew Tools Document Windows Help
S BB(EDHEEB A2 eRgBIEE MRS E KIS S oo

[B] ClassDiagram At-FS 77

NoTrai6§On Same Block
DoorsClosedIFFnonZeroSpeed
Measure

BlockSpeedLimited

nextBloc

7

G
=
e
| =
1a
| ¢
1%
12
| =

doorsState : String

MeasuredSpeed : Real m‘
BlockSpeed : Real I

StationBlock

Modified of 92M

SafeTransportation

/[/ /NoColision/

-

Edit “iew Tools Document Windows Help

S B B(EHEB 02 RGBS EFS R K KD S| zo0mhs]%

[B] (Goal) SafetyGoals At-F
SafeTransportation

A

NoTrainCollision DoorClosed WhileMoving BlockSpeedLimited
40y \§

, \/
NoTralnsOn WorstCaseStopping DoorsClosedIFFnonZeroSpeed MovingFFrionZeroSpeed
Same Block DistanceMaintained Measure

(Goal) NoTrainsOn Same
Block diagram

TrainController

Modified of 92M

SafeTransportation

Driving ™ Command

SafeTransportation

SafeAcceley/= = = *-" i
~~ -1

Driving ™ Command

Edit “iew Tools Document Windows Help
S BB(EDEE 02 eRgBIEEB MRS E KIS S zomhen %

Iﬂ (Goal) NoTrainsOn Same Block diagram AR-F1

Goal) SafetyGoals
NoTrainsOn Same Block
[N

nSystemhlodel

wrceDocuments

>oal) FastJourney diagram

>0al) FunctionalGoals

>0al) High-level goals

»0al) NoTrainsOn Same Block diagram
>o0al) Operationalization

so0al) QoS-Goals

soal) SafetyGoals

Yhstacle) Obstacles to train stops
assDiagram

istdourney diagram (Text Explanation
ockSpeedLimited

ockSpeedLimited "Concerns" Train
ockSpeedLimited "Responsibility" Trai
‘akeSystemDowwn

aorClosed WhileMoving

aorClosed WhileMoving "Refinement”
rworsClosediFFnonZeroSpeedieasure

ClosedIFFhonZeroSpeedhd - - - -
orsciosedFFronzerospeeecsure |l TrainStops IF StopSignal StopSignal IFF TrainOnBlock

‘iverlnresponsive

o
Forg
=
=
=1
A
3
g
2,
=

) TrainController

SafeTransportation

SafeAcceley/= = = *-" i
~~ -1

Driving ™ Command

COL ¥IEV 1001 LDOCUMENT ¥¥INGows nep

S BB HEB B2 eRGB|EEBMHSE KOS zompus

q
del View |) [B] (Obstacle) Obstacles to train stops Alt-F7

TrainStops |F StopSignal

[\
NoStopAtStopSignal

N\

SignalNotVisible BrakeSystemDown

7

RegularResponsivenessCheck

7
(W=
=
E
ol =
e
r
1
14
=

Goal-oriented model building

1. Domain analysis: f/ SafeTransportation / "\ 3.52B analysis:

refine/abstract goals b enriched 9°a's
/ / /NoCoII|S|or;/ (alternatives)
: : ZNQILamsﬁameBImk/
2. Domain analysis: _ /Satehces) /-4 6 i Rick & conflict
derive/structure / \ analysis
objects
/ On \

0:1

Train Block 4 _SZB analysis: /SafeAcceIe/— --¢-" b
enriched objects -

Drm

_ command Y LIl neww 9. Responsibility analysis:

/T | agent assignment
7@5 050 A |
2TMane /\! 7 & 6. Operationalization
OO | & behavior analysis
OnBoardController] ! [+— '
K | - I | /

. [specs/train/TrainSystem-RE04.0b] - Cediti Objectiver 1.5.2 with advanced features -8 x|

File Edit “iew Tools Document Windows Help

LS BB« X0 al2eBglBla

[Package View | Model View | ,

=]={=]=3" i :

@ @1 -TrainSystemModel
©- (% sourceDocumerts ;

I3| (Agent) TrainController (Responsibility Dia

EJ (&gent) TrainDriver (Responsibilty Diagral

Ed (Goal) FastJourney diagram

B| (Goal) FunctionalGoals

B (Goal) High-level goals

Er‘ (Goal) NoTrainsOn Same Block diagram

B| (Goal) Operationalization

B| (Goal) Qos-Goals

B| (Goal) SafetyGoals

EJ (Ohstacle) Ohstacles to train stops

B| ClassDiagram

E FastJourney diagram (Text Explanation)
L7 BlockSpeedLimited
oBlockSpeedLimited "Concerns” Train

©- é BlockSpeedLimited "Responsibility" TrainCd
@ BrakeSystemDown
£7 DoorClosed WhileMoving

(o] /6\ DoorClosed WhileMoving "Refinement"” Docs
L7 DoorsClosedFFnonZeroSpeedieasure
raDoorsClosedFFnonZeroSpeedieasure "C

(o] é DoorsClosedIFFnonZeroSpeedieasure "R

[(Goal) Operationalization Att-F1

DoorClosed
WhileMoving

(Start ™ stop ML CloseDoors MK OpenDoors__

FormalRegPre of to OpenDoors
I State = 'Stopped|

@ DriverUnresponsive
A‘ to OpenDoors [OperationalizationActionSon)
Properties
[Value
IReqPost
ormalReqTrig

o0 2R P IODDOODDQD LN E

ormalReqPre tr State = 'Stopped’

eqPost

Trig

Reql |
| [[Modified |

start ||| 1] @&) 3] || [EMicrosoft Powerpoint - [R... | §ghFausT-REO4 || specs train/Trainsys... WSSO0V, 10

DoorsClosedWhileMoving

Goal Maintain [DoorsClosedWhileMoving]

Def All train doors shall be kept closed at any time
when the train is moving

FormalSpec VY tr: Train
tr.Speed = 0 = tr.DoorState = ‘closed’

[Category Safety]
[Priority Highest]

[Source From interview with railway engineer X ...]

oP: P shall hold in the immediately next state

() P: P shall hold in some future state

1 P: P shall hold in every future state

PU N: P shall hold in every future state
until N holds

PW N: P shall hold in every future state
unless N holds

Propositional connectives

First-order language

quantifiers on object instance variables V , 3

P= Q: OF—- Q)

Pe Qo OFP< Q)

Some bits of real-time linear temporal logic (3)

Real-time constructs:

Ot P: P shall hold in every future state
up to T time units

O0<r P: P shall hold within T time units

Operators on past:

® P. P did hold in the previous state (right before)
¢P, mP, PS O,PB O: always Psince/back to O

‘ST P, .ST P, ZTC

@P = °®(mP)AP g@

(H,i)|= oP iff (H, next(i))|= P
smallest time unit

H,i)|]=0P iff (H,j)|= P for some j=i

(H,i)|=OP iff (H,j)|=P forallj=i

(H,i)|=PU N iff (H,j)|= N for some j=i
and (H, k) |= P forall k:i<k<j

(Hi)|=PWN iff (H,i)=PUNor((H,i)|=0OP

(H,i)|= Q<P iff (H,j)|= P for some j=i
with dist (i,j) < T

DoorsClosedBetweenPlatforms

Goal Maintain [DoorsClosedBetweenPlatforms]

Def All train doors shall be kept closed at any time
between two successive platforms

FormalSpec ... ?

[Category Safety]
[Priority Highest]

[Source From interview with railway engineer X ...]

DoorsClosedBetweenPlatforms

Goal Maintain [DoorsClosedBetweenPlatforms]

Def All train doors shall be kept closed at any time
between two successive platforms

FormalSpec V¥ tr: Train, pl: Platform
At (tr, pl) A 0 = At (tr, pl) =
tr.Doors = "closed" W At (tr, next(pl))
[Category Safety]
[Priority Highest]
[Source From interview with railway engineer X ...]

Achieve [FastJourneyBetweenPlatforms]

Goal Achieve [FastJourneyBetweenPlatforms]

Def A train shall reach the next platform from the current one
within T time units

FormalSpec ?

[Category ...]
[Priority ...]

[Source ...]

Achieve [FastJourneyBetweenPlatforms]

Goal Achieve [FastJourneyBetweenPlatforms]

Def A train shall reach the next platform from the current one
within T time units

FormalSpec V tr: Train, pl: Platform
At (tr, pl) = {_g At (tr, next (pl)

[Category Safety]
[Priority Highest]

[Source From interview with railway engineer X ...]

74

7

A goal model is an AND/OR graph

¢ Goals are recursively refined/abstracted

/ EffectivePassengersTransportation/

/ RapidTransportation / / SafeTransportation /

AND-refinement

\

/FastJourney/ /HighFrequenC //NoTralnColllsmn/ \[/)V%?Irgl\(/zlg/si’r?g [L?r%lf’(se%eed/

\O i}TO_WGS-IS
OR-refinement

FastRunWhen SignaISetTo WorstCaseStopplng NoTrainsOn
GoSignal GoPromptIy DistanceMaintained / | SameBlock

/4

A goal model is an AND/OR graph (2)

¢ Leaf nodes = goals assighable to single system agents

/Maintain [DoorsCIosedWhiIeMoving]/

-

/Moving Iff NonZeroSpee(}\ /Maintain [Doors ClosedWhileNonZeroSpeed] /

_-Tequirement

MeasuredSpeed aintain [DoorsStateCIosed DoorsCIosed Iff
PhysmaISpeed NonZeroMeasuredSpeed] DoorsStateCIosed

responsibility assignment _ _ _

-~ O O _Software

,

) agent

O
| |
environment :)
e ﬂ_/,<f\ SpeedSens@ @alnControI@ <ZDoorsActuat¢

) OR-refinements

7

¢ OR-refinement of goal & into refinements R,, ..., R, means:

G can be satisfied by satisfying all subgoals from
any of the alternative refinements R,

¢ Alternative goal refinements yield different options
(system variants)

- pros/cons to be evaluated against soft goals for selection

/Avoid [TrainCollisions] /

X), — —-alternative

AN

Avoid [TrainsOn/ [Maintain [WorstCase
SameBIlock] StoppingDistance]

&, [specs/train/TrainSystem-RE04.0b] - Cediti Objectiver 1.5.2 with advanced features

File Edit Yiew Tools Document Windows Help

Ee B B|ed%baldebgBalr

Package Yiew |ﬁ
(=j=}=}=]cy]

rain progress

Instances

Objects

(Goal) Train progress (hounde
(Goal) Train progress (refinem

Iﬂ. (Goal) Train progress (hounded) Ak-F1

train progress (bounded)

A

F@E [[T FormalDef (formuls) &t-F2

bz ”Ll)l Styles

I FormalDef oftrain progress (hounded)

All tr: Train, b : Block

nextBlock{On(t") , h)

=== <> [==< 4 steps]On(in=nh

(Goal) Train progress (Unboun|(22 : Vo)
(Ohject) Train progress 2 ~
Train progress (bounded) (op &t
© move train to next block 7 N ol
7 progress when go sighal (bo
_,6\ progress W:en go s?gna: Ebo O g _
7 progress when go sighal (un o - /
|, progress when go signal (un [T] FormaiDet (formuls) AR-Fa g“ @ [F) By Attributes and Check of the refinement (dependents values) AR-F3 ©
© set to go signal o4 b". " "d " olleeilae '
»>-set to go sighal "Output” Bloc [| AN LI') Etau M 2428 - _ i
7 signal set to go (hounded) 3 Lé on(Train [110) -Iocpka 9 .OS
|, signal set to go (bounded) "0 : ii FormalDef of sighal set to go (hounded) 3 _iT_Ll_ 1Bl k_ 1—Ll_ d
£7 sighal set to go (unhounded) &8 = < All tr: Train, b : Block S go_s!m(BLL[o) = redg
|, signal set to go (unbounded) "§ || 2l — nextBlock{ On(tr) , b E go_s!gn_al(mmm =red{
e Train "Input” move train to nest| || 7)) € === <> [=< 2 steps] go signal { h) = green() § ﬂﬁgﬁ%ﬁéﬂ% o) is True
- Train "Input” set to go signal 4 1 _ Block [2] .
=7 train progress (bounded) : e [T] FormaiDet (formula) At-F5 2 nextBlock Block [3]1(Block [1]()) E True
T o N o (T oo % nextBlockBlock [2]0 Block [310)) is True
P i b}" v)"'g;"defautt v = |
| o 4
H " ' = :-.'l o —
(6\ train progress (bounded) "Refi. A i FormalDef of progress when go signal (bounded) % i) STATE_ 1 {still within loop)
7 All tr: Train, b : Block [Qﬂ(_[@ﬂlﬁ) =Block [1]10
Propetties 7 Q nextBlock(Onitr), h) A go signal (h)=green([H] QO_S!HN_NMEIO) =green()
e l e é ==>» 2> [=< 2 steps] On(tn = b o signal Block [2]()) = red(
Pattern ‘ 3 .
% Newy concept Reference
Althame ; ‘t ! P .. .
Complete | [Sep 19, 2004 11:02:53 A a

M INEO: Scenario found
Sep 19, 2004 11:03:00 AM U to the = (4 9:02 ®
Refinement checkin
Sep 19, 2004 11:03:00 A ' orrel®he! gl s heel e

a4
J[wocities | (BT 53w]

@) Approach 3: reuse refinement patterns

¢ Catalogue of patterns encoding refinement tactics

¢ Generic refinements proved formally, once for all
¢ Reuse through instantiation, in matching situation

Can be used informally (natural language templates)

/C=>{)T/ /C=><>T/

/C=0M//M= 0T/ /CAD=(T//C=9D//C=>CWT/

milestone-driven guard introduction

Checking goal refinements with patterns

Achieve [TrainProgress]
On (tr, b) = ¢ On (tr, next(b))
missing subgoal !/
detectable automatically

Achieve [ProgressWhenGo]
On (ir, b) A Go [next(b)]
= () On (tr, next(b))

Achieve [SignhalSetToGo]
On (ir, b) = () Go [next(b)]

Checking goal refinements with patterns

Achieve [TrainProgress]
On (tr, b) = ¢ On (tr, next(b))

Achieve [ProgressWhenGo]

On (tr, b) A Go [next(b)]
= () On (tr, next(b))

Achieve [SignalSetToGo]
On (tr, b) = { Go [next(b)]

Maintain [TrainWaiting]

On (ir, b) =
mathematical proof On (tr, b) W On (tr, next(b))
hidden, reusable

Case1 v Case2
C a Case1 C A Case2 T1v T2
= OT1 = (T2 =T

Other frequent patterns .. (2)

/GoalOnUnMonitorableCondition /

GoaIOnI\/Ionitorable//MonitorabIeCondition =S
Condition UnmonitorableCondition

1 instantiation

/I\/IotorRaising = HandBrakeReleased /

motor.Regime = ‘up’ = o motor.Regime = ‘up’
HandBrakeReleased A < MotorRaising

Other frequent patterns .. (3)

/GoaIOnUnControIIabIeCondition/

GoalOnControllable/ [ControllableCondition <
Condition UncontrollableCondition

1 instantiation

/motor.Regime - ‘up’ = HandBrakeReleased /

motor.Regime = ‘up’ = 7% handBrakeCtrI = ‘off’
handBrakeCtrl = ‘off’ “« HandBrakeReleased

requirement

Operationalization pattern: example

/HighWa’rerSignal ='On" = 0 PumpSwitch = 'On'/

C. HighWaterSignal = 'On’
......................... 7-. PumPSWITCh - lonn
" Operation Opl " Operation Op2
. DomPre -~ T . i DomPre T
DomPost T . DomPost - T

ReqTrig for 6: € . ReqPre for 6: = C

Operationalization pattern: example

/HighWa‘rerSignal ='On’ = O PumpSwitch = 'On'/

/Operaﬁon Swi‘rchPumpOn\
DomPre PumpSwitch = On
DomPost PumpSwitch = On

ReqTrig for RootGoal

C: HighWaterSignal = "On’
T: PumpSwitch = 'On’

o~

/Oper'a'l'ion SwitchPump Off)

\ HighWaterSignal = 'On'/

_

DomPre PumpSwitch = On

DomPost PumpSwitch = On

ReqPre for RootGoal
HighWaterSignal = 'On'/

2/ Obstacle analysis for risk-driven RE

¢ Motivation: goals in refinement graph are often too ideal,
likely to be violated under abnormal conditions
(unintentional or intentional agent behaviors)

¢ Risk analysis can be anchored on goal models

] iwver 1.5.2 with advanced features =101 X

2 ¢ a|B|a|lE & &
(Obstacle:) Obstacles to train stops Ak-F7

TrainStops |IF StopSignal

IN

NoStopAtStopSignal

>/ N N\

227200090000 Y
2 22288

SignalNotVisible BrakeSystemDown
Z |

RegularResponsivenessCheck

I][moditiea | D oro2m &
R...

LBV OAMEBEL): 742

N
‘L@g

NS

£

'~

Correspond to goal categories & their refinement ...
¢ Hazard obstacles obstruct Safety goals
¢ Threat obstacles obstruct Security goals 3@0

— Disclosure, Corruption, DenialOfService, ...

¢ Inaccuracy obstacles obstruct Accuracy goals
¢ Misinformation obstacles obstruct Information goals

— Noninformation, Wronglnformation, ToolLatelnformation, ...

+ Dissatisfaction obstacles obstruct Satisfaction goals

— NonSatisfaction, PartialSatisfaction, TooLateSatisfaction, ...

¢ Unusability obstacles obstruct Usability goals
.’ ..

Obstacle categories for heuristic identification

&> Obstacle diagrams as AND/OR refinement trees

2

Anchored on leafgoals in goal model

- root: 0 &
- obstacle AND/OR-refinement: same semantics as goals
- leaf obstacles: feasibility, likelihood, resolution easier to determine

StopSignal =
TrainStopsAtBlockSignal

—— _ —obstruction
root obstacle < _ _ 4 _____
‘ v
StopSignal A
= TrainStopsAtBlockSignal
OR-refinement—— _ _ _
T - \
obstacle — _ _ § 5

\ :SignaIVisibIe \\- DriveResponsive\\BrakeSystemDown\

ResponsivenessCheck
SentRegularly

countermeasure goal — « _ 7/
~

Obstacle diagrams as AND/OR refinement trees (2)

Ambulance At Inciden(’;/
InTime WhenMobilize

£}

MoblllzedAmbuIance Not
Atlncident InTime

S

\AmbulanceLost AmbulanceStuck Ambulance
InTrafficdam BrokenDown

And-refinement
AmbulanceCrew In carGPS
NotinFamiliarArea Not\Working

can be used informally

% Obstructions propagate bottom-up
¢ = in goal AND-refinement trees

¢ Cf. De Morgan’s law: - (61 A G2) equivalent to = G1 v - 62

EH__ B

propagated
() obstruction

S A A L Y

=> Severity of consequences of an obstacle can be assessed
in terms of higher-level goals obstructed

Obstacle analysis & goal model elaboration
are intertwined

oal model

data dependency
elaboration

>
Obstacle Obstacle Obstacle
identification assessment resolution

¢ Goal-obstacle analysis loop terminates when remaining obstacles
can be tolerated

- unlikely or acceptable consequences

& Which goals to consider in the goal model?

- leafgoals (requirements or expectations): easier to find how to
break finer-grained goals

- mission-critical goals

Flight plans not known

Flight manager failure

Sector not monitorable

Controllers not available

Communication problems

P\ircraft postions not knowr‘)
@

No communication with pilots

Communication problem between controllers

Flight plans not communicated in time

Wrong flight plans used

Uberlingen

mid-air

Facts

collision, July 2002

July 1st 2002, southern Germany
DHL Boeing 757 x Russian Tu-154
71 people killed, incl. 52 children

Preliminary analysis shows:

STCA out of order at Swiss ATC

Only 1 controller on duty at crash time (the other one was
taking a break) = controller overloaded

Problem between air traffic handover between Switzerland
and Germany for another flight landing

German ATC failed to call Swiss ATC

Conflict between Tu's TCAS embedded system and tower's
order

Pilot choice: Tower's order prior to TCAS
Discrepancies between screen displays and radar traces

|Aee|lnenlrlrlllc representation Accurate air traffic awareness I

| Deviation from planned route identified

‘Good communication between planner and tactical

Sector monitorable

| Aircraft positions known | | Controllers assigned to sectors |‘

| Working communication means |

Communication pilot-controller possible | I Communication controllers adjacent sector possible

Communication controllers same sector possible

WorstCaseStoppingDistanceMaintained
ReceivedCommand
ExecutedByTrain

SafeAcceleration, ; AccelerationSent SentCommand
Computed InTimeToTrain ReceivedByTrain

Obstacle identification: informal example

/WorstCaseStoppingDistancel\/laintained/

/ ReceivedCommand ;
ExecutedByTrain |

SafeAcceIeratlonl " AccelerationSent // SentCommand / _T_
/ Computed InTlmeToTram RecelvedByTraln

__

Accelerat|on AccelerahonCommand AccelerationCommand
NotSafe Not _ Not_ :
SentinTimeToTrain ReceivedInTimeByTrain

Obstacle identification: informal example

/WorstCaseStoppingDistancel\/laintained/

/ ReceivedCommand ;
ExecutedByTrain |

__

Acceleration AccelerationCommand AccelerationCommand
NotSafe Not _ ~ Not_ :
/ SentinTimeToTrain ReceivedInTimeByTrain

W s 4

_—

/ﬁ

MovingOnRunway < MotorReversed
% MovingOnRunway WheelsTurning
<> WheelsTurning <> MotorReversed

Tautology-based refinement:
A320 braking logic example

/ MovingOnRunway <> MotorReversed /

% MovingOnRunway WheelsTurning
= WheeIsTurning = MotorReversed
obstruction
NOT NOT
MovingOnRunway WheelsTurning
< WheeIsTurnlng < MotorReversed

s

MovingOnRunway
A
= WheelsTurning

OR-re f/nemem‘
(complete) \

WheelsTurning WheelsTurning MotorReversed
A A A
= MovingOnRunway\ \ = MotorReversed\ \ = WheelsTurning

Generating obstacles:
regressing goal negations

/ MovingOnRunway = o ReverseThrustEnabled /

MovingOnRunway WheelsTurning
X <« WheelsTurning = 0 ReverseThrustEnabled

t

?

Original A 320 braking logic

Resulting obstacle trees

/ MotorReversed « MovingOnRunway/

53_ MovingOnRunway WheelsTurning
\ e WheeIsTurning = MotorReversed

obstruction

NO‘I‘ NO‘I‘
; X&» \ MovingOnRunway MotorReversed
£ = WheeIsTurnlng < WheelsTurm,lng\O

OR-refinement
(complete)

MovmgOnRunway WheelsTurning WheelsTurning MotorReversed
A A A
- WheeIsTurnlng = MovingOnRunway\ \ = MotorReversed\ \ = WheelsTurning

- /\O\ . .

\WheeIsNotOut WheeIsBroken Aquaplamng

Warsaw
obstacle

Instantiating the starvation pattern

' Yu: User, r: Resource
’ | Requests (u, r) =) Gets (u, r)

1 u: User, r: Resource
() (Requests (u, r) A O - Gets (u, r))

Gets (u, r)

31 u: User, r: Resource
=> = Coalition (u, r)

() (Requests (u, r) A
O (- Gets (u, r) U Coalition (u, r)))

T Generating obstacles:
another example

&=

/ BrakeReleased « DriverWantsToStart /

—t

BrakeReleased / F AccelerPedalPressed /

< MotorRaising < DriverWantsToStart

% MotorRaising <
AccelerPedalPressed

Generating obstacles:
another example

i %_”

/ BrakeReleased « DriverWantsToStart /

—t

BrakeReleased % AccelerPedalPressed
< MotorRaising < DriverWantsToStart

% /% MotorRaising < %

AccelerPedalPressed \AccelerPedaIPressed A \

T

Q% MotorRaising A
o - AccelerPedalPressed

= DriverWantsToStart

T Generating obstacles:
another example

L o=

/ BrakeReleased « DriverWantsToStart /

4

BrakeReleased x AccelerPedalPressed
< MotorRaising < DriverWantsToStart

% / MotorRaising <

"AccelerPedalPressed AccelerPedaIPressed

$ - DriverWantsToStart
31
@g% \ MotorRaising A
o & - AccelerPedalPressed
¢ =g /O/ \)
AerondltlonlngRalsmg

cf. driver killed by his
luxurious car on a hot summerday

Model check
against goal

Take dom props
Extract

examples

(+ obstacle negations);
synthesize LTS

Learn
inductively

Q@ ﬂ@ I: F-LTL property P

Model M Semantics L (M)

Inductive logic programming

Machine learning technique for constructing concept descriptions
from examples + logical domain theory [Muggleton 1994]

Given:
K knowledge base
E* set of positive examples
E- set of negative examples
IC integrity constraints Inductive Logic Programming
systems available (XHAIL, TAL)
Find: ~ /
H generdlisation such that * Sscalable for finite domains
(K HY - Er * Sound and complete
* fully automated
{K, H} ¥ E

{K H IC} ¥ false [Ray 2009, Corapi et al 2010]

,&) The problem, more precisely

=

Given

A declarative model: set of LTL goals G + domain properties D
D¥G, 1{D, G} ¥ false

Find
A domain-complete set of obstacles {O,, ..., O} such that
{0,D}=-G, {0,D}¥ false
{~0,,..,-0,D}EG

where E is interpreted as LTL satisfaction relation
wrt all LTS traces

S

<

—» BP:= Dom — — - {BP)

l

Synthesise LTS

@arget: C = —@

6@ The solution, more precisely

Model Check

L(BP)

|

L(BP) = C = —~(OT)

y

Model Check

BP := BPU -0O U Dom’

__ _ _(BP)

meFC¢@T

Cmomer

==

Select

®
s

FElicit new Dom’

!

———BP

Learn

—=

=

l

Synthesise LTS

—> BP:= Dom — — - {BP)

cﬁ The solution, more precisely

@arget: C = —@

Model Check

y

L(BP)

|

L(BP) = C = —(OT)

Model Check

BP := BPU -0 U Dom’

L (BP)

L@HkCi@T

(memer

=

Select

!

o=
G

FElicit new Dom’

Learn

———BP

—=

=

—> BP:= Dom — — —{BP)

l

Synthesise LTS

f@ The solution, more precisely

@arget: C = —@

Model Check

y

L(BP)

|

L(BP) |= C = —(OT)

Model Check

BP := BPU -0 U Dom’

— —_(BP)

mekCé@T

Cameer

=

Select

!

‘o
Gou

)

Dom

FElicit new Dom

———BP

==

#‘?)

l

Synthesise LTS

S BP:= Dom +—--{BP)

@arget: C = —@

v

The solution, more precisely

Model Check

L(BP)

|

L(BP) = C = —(OT)

y

Model Check

BP := BPU -0 U Dom’

__ _ _(BP)

L@HFCé@T

Camemer

Select

!

(D
Go

==

)

Dom

FElicit new Dom

———BP

Learn

e

A

—> BP:= Dom — — —{BP)

l

Synthesise LTS

\cﬁ The solution, more precisely
-~

@arget: C = —@

Model Check

y

L(BP)

|

L(BP) = C = —(OT)

Model Check

BP := BPU -0 U Dom’

— —_(BP)

L@HFCé@T

Cameer

=

Select

!

(D
Go

)

Dom

FElicit new Dom

Learn

———BP

—> BP:= Dom —--{BP)

l

Synthesise LTS

cﬁ The solution, more precisely

@t&rget: C = —.@

Model Check

y

L(BP)

|

L(BP) | C = —~(OT)

Model Check

mekC:@T

amemer

!

(B
Go

BP:= BPU-0O U Dom’ —--{BP)
A
Select
Dom’ FElicit new Dom

Learn

———BP

Back to trains and signals ...

Goal Achieve [TrainStoppedAtBlockSignal If StopSignal]
StopSignal = o TrainStopped

Input: domain properties

Temporal assertions (necessary conditions for goal target)
+ fluent definitions

Dom props:
TrainStopped = DriverResponsive

TrainStopped = SignalVisible

Fluent Definitions:

TrainStopped = < stop_train, start_train, false >
StopSignal = < set_to_stop, set_to_go, false >
SignalVisible = < clear_signal, obstruct_signal, frue »

DriverResponsive = < driver_responds, driver_ignores, true »

LTLD)FC = OT

LTLD)F C = - 0T

Counterexample generation

TrainStopped = DriverResponsive
A

TrainStopped = SignalVisible

StopSignal =
o TrainStopped

driver_responds
stop_train

! driver_ignore . driver_ignores
Si ; O-fo start train obstruct_signal start train
set_to_sto
allemio gnsl set_to_go set_to_go
; set_to_stop clear_signal set_to_stop

clear_signal obstruct_signal

SPUOASIL~4IALLD
driver_responds

driver_responds
start_train
set_to_go
signal_stop
obstruct_signal

clear_signal

start_train
set_to_go
set_to_stop
clear_signal
driver_responds

obstruct_signal

tr-: set to stop, driver ignores

TrainStopped = DriverResponsive

A
TrainStopped = SignalVisible

driver_responds

stop_train : ;
driver_ignore
set_to_go)
start_train
set_to_stop

set_to_go
set_to_stop
clear_signal

clear_signal

A0

start_train

set_to_go O
set_to_stop '
clear_signal

driver_responds

obstruct_signal

Witness generation

StopSignal =
- o TrainStopped

driver_ignores
start_train

set_to_go

clear_signal

SPUOASIL~4IALLD

clear_signal

set_to_stop
obstruct_signal

driver_responds

driver_responds
start_train

set_to_go

obstruct_stgnal

signal_stop
obstruct_signal

Preparation for learning

Domain properties, goals, counterexample and witness(es)
are automatically translated into
the logic programming formalism understood by learning tool

:- holdsAt(trainStopped,T,S),

TrainStopped = DriverResponsive not holdsAt(driverResponsive,T,S).

TrainStopped = SignalVisible
TrainStopped = <stop_train, start_train, false> initiates(stop_train,trainstopped).

S’ropSignal = ¢set to SfOp R g0 false> terminates(start_train,trainStopped).
SignalVisible = <clear_signal, obstr_signal, frue>
DriverResponsive - <responds, ignores, true> - initiates(driver_responds,driverResponsive).

terminates(driver_ignores,driverResponsive).

S’ropSignal TrainS’ropped initially(driverResponsive).

set to stop, driver ignores)
- - - holdsAt(trainStopped,T2,S):-
holdsAt(stopSignal,T1,S), next(T2,T1),

not obstructed next(trainStopped,T1,S).

DriverResponsive = < driver_responds, driver_ignores, frue »

initiates(driver_responds,driverResponsive).
terminates(driver_ignores,driverResponsive).
initially(driverResponsive).

TrainStopped = DriverResponsive

:- holdsAt(trainStopped,T,S),
not holdsAt(driverResponsive,T,S).

StopSignal = o TrainStopped

holdsAt(trainStopped,T2,S):-
holdsAt(stopSignal,T1,S),

next(T2,T1),
not obstructed next(trainStopped,T1,S).

-
YaY

set to stop, driver ignores

happens(set _to stop,0,cx).
happens(driver_ignores,1,cx).

not holdsAt(trainStopped,2,cx).

)

J‘*'!c ==

Translation into a logic program (5)

=)X

¢ Witnesses ...

set to stop, stop train

!

.. add to the knowledge base the facts
happens(set_to stop,0,wx).
happens(stop train,1,wx).

.. add to the negative examples of obstacle the fact:
holdsAt(trainStopped,2,cx).

/

generalization to be inferred should be consistent with
goal$ target not being obstructed in this negative example

obstructed next(trainStopped,T,S):-
holdsAt(stopSignal,T,S),
not holdsAt(driverResponsive,T,S).

Second process iteration

J*cc o
2 X8

Given

A declarative model: set of LTL goals G + domain properties D
+ obstacle O,
iD, A0} ¥ G, 1D, G} ¥ false

Find
A set of obstacles {0,, ..., O.} such that
{0,D}F-G, {0O,D}¥ false
{D,-0,,..,-0.}FG

where F is interpreted as satisfaction relation
wrt all LTS traces

Second process iteration (2)

Domain Properties:

TrainStopped = DriverResponsive
TrainStopped = SignalVisible

TrainStopped = < stop_train, start_train, false>
StopSignal = < set_to_stop, set_to_go, false >
SignalVisible = < clear_signal, obstruct_signal, frue >

. DriverResponsive = < driver_responds, driver_ignores, frue >.
Goal:

StopSignal = o TrainStopped

Negated Obstacle Condition:
O (-StopSignal V DriverResponsive)

| 0, = () (StopSignal A - SignalVisible) |

y é? Benefits of combining
5l¢1 SN .
model checking & inductive learning

¢ Tool-supported approach for incremental generation
of domain-complete set of obstacles
- no user intervention required for example provision

¢ Domain-feasibility of generated obstacles granted for free
- no need for separate check as in [LamsweerdedLetier 2000]

¢ Assists in eliciting relevant domain properties

¢ Can be integrated with generation of operational reqgs
[Alrajeh et al 2009]

¢ Evaluation on LAS case study

- generation of all formal obstacles that were derived __, .
manually in [van Lamsweerde&Letier00], and more \

Brief recall:
risk management at RE time

Obstacle Obstacle
assessment resolution

)

> likely?
%; severe, likely consequences?

resolution =
revised goal model
with countermeasures

¢ Assessment is aimed at focussing resolution on critical obstacles
[Cailliau & van Lamsweerde, RE'2012]

Assessing obstacles: example %/\\é\(%

Ambulance At Inciden(’;/
InTime WhenMobilize

£}

MoblllzedAmbuIance Not
Atlncident InTime

»" :

\AmbulanceLost \AmbulanceStuck\\ Ambulance\

InTrafficdam BrokenDown

AmbulanceCrew In carGPS
NotinFamiliarArea Not\Working

Assessing obstacles: example %

Ambulance At Inciden(’;/
InTime WhenMobilize

£}

MoblllzedAmbuIance Not
Atlncident InTime

»" :

\AmbulanceLost AmbulanceStuck Ambulance
InTrafficdam BrokenDown

AmbulanceCrew In-carGPS
NotinFamiliarArea \ NotWorklng
0.2
P (AmbulancelLost | NotInFamiliarArea, GPS NotWorking)) = 0.95

Assessing obstacles: example %

Ambulance At Inciden(’;/
InTime WhenMobilize

£}

MoblllzedAmbuIance Not
Atlncident InTime

»" :

0.019 \AmbulanceLost AmbulanceStuck Ambulance
InTrafficdam BrokenDown

AmbulanceCrew In carGPS
NotinFamiliarArea NotWorklng

P (AmbulancelLost | NotInFamiliarArea, GPS NotWorking)) = 0.95

Assessing obstacles: example)

Ambulance At Inciden(’;/
InTime WhenMobilize

£}

MoblllzedAmbuIance Not
Atlncident InTime

»" :

0.01% \AmbulanceLost AmbulanceStuck Ambulance
InTrafficdam BrokenDown

0.02 0.005

AmbulanceCrew In carGPS P (NotInTime | Lost) = 0.99
NotinFamiliarArea NotWorklng P (NotInTime | Jam) = 0.98
P (NotInTime | Broken) = 1

8 ‘ o]
> NOTWOorkKing)) QjJ

b
\
2
v)
jL
L\\

Assessing obstacles: example %

Ambulance At Inciden(’;/
InTime WhenMobilize

£}

D.043 MoblllzedAmbuIance Not
Atlncident InTime
0.0 \AmbulanceLost AmbulanceStuck Ambulance
InTrafficdam BrokenDown
0.02 0.005

AmbulanceCrew In carGPS P (NotInTime | Lost) = 0.99
NotinFamiliarArea NotWorklng P (NotInTime | Jam) = 0.98

P (NotInTime | Broken) = 1

&)

” . o .
| T ‘ 1 A / \) \ 4 :) €
[AmbulancelLos NotT.Lnran Nalk EFS Notworking)) J.J

=G
Assessing obstacle consequences @%

¢ Obstacle consequence = lower degree of satisfaction of ...
- obstructed leaf goal,
- its parent/ancestor goals

¢ Propagation from root obstacle to obstructed leaf goal:
1-P(LG)=P (RO)x P (-~ LG | RO)

Ambulance At Incident
0.997 InTime WhenMobilized

'\ MobilizedAmbulance Not
0.043 Atincident InTime

Assessing obstacle consequences: Qﬁ%‘
from obstructed leaf goals to higher-level goals

¢ Up-propagation through goal refinement graph ...
- for single system with complete AND-refinements:
P(6)="P (56, SG,)
+P (586,,~ SG,)xP (G| SG,, -~ S6,)
+P (56,,-56,)xP (G| SG,, -~ S6,)

- further simplification for refinement patterns
(complete, minimal, consistent => independent subgoals)

P(G) = P(S6,) x P(S6G.,) milestone-driven
P(G) = P(CS) x P(SG,) + (1 - P(CS)) x P(S6.,) case-driven
¢ Two kinds of consequence assessment

- global: severity SV (6) computed from all leaf goal obstructions
- local: single leaf goal obstruction, all other leaf goals with P(LG) = 1

Global impact analysis: example

Ambulance Atincident InTime
When IncidentReported

When IncidentReported InTime When Allocated
098

Ambulance Allocated // Ambulance Atincident /

~

Ambulance Mobilized Ambulance Atincident
When Allocated InTime When Mobilized

0.937

AllocatedAmbulance AllocatedAmbulance
Mobilized When OnRoad Mobilized When AtStation

0.98

W

0.5 /AIIocatedAmbuIance // AllocatedAmbulance /0.90

Mobilized ByPhone Mobilized ByFax

Global impact analysis: example

Ambulance Atincident InTime
When IncidentReported

Ambulance Allocated Ambulance Atincident
When IncidentReported InTime When Allocated

0.98

~

Ambulance Mobilized Ambulance Atincident
When Allocated InTime When Mobilized

/é\ -
AllocatedAmbulance AllocatedAmbulance 0 995
Mobilized When OnRoad Mobilized When AtStation .
0.98 /J)\ /

AllocatedAmbulance AllocatedAmbulance 0.90
Mobilized ByPhone Mobilized ByFax '

W

0.9

Global impact analysis: example

Ambulance Atincident InTime
When IncidentReported

When IncidentReported InTime When Allocated
098

Ambulance Allocated // Ambulance Atincident /

~

0.984 Ambulance Mobilized Ambulance Atincident
When Allocated InTime When Mobilized

\ /é\ 0.957

AllocatedAmbulance AllocatedAmbulance 0.995
Mobilized When OnRoad Mobilized When AtStation :

0.98

W

0.5 /AIIocatedAmbuIance // AllocatedAmbulance /0.90

Mobilized ByPhone Mobilized ByFax

Global impact analysis: example

Ambulance Atincident InTime
When IncidentReported

P

Ambulance Allocated Ambulance Atincident 0.946
When IncidentReported InTime When Allocated *

0.98 /

/
0.984 /Ambulance Mobilized Ambulance Atincident

When Allocated InTime When Mobilized
0.937

AllocatedAmbulance AllocatedAmbulance 0.995
Mobilized When OnRoad Mobilized When AtStation :

0.98

W

0.5 /AIIocatedAmbuIance // AllocatedAmbulance /0.90

Mobilized ByPhone Mobilized ByFax

Global impact analysis: example

Ambul Atincident InTi =
hen adeoporial o/ 0.928 EPS = 92.8X

/! SV = 2.2%

Ambulance Allocated Ambulance Atincident 0.946
When IncidentReported InTime When Allocated :

0.98

/
0.984 /Ambulance Mobilized Ambulance Atincident

When Allocated InTime When Mobilized
0.937

AllocatedAmbulance AllocatedAmbulance 0.995
Mobilized When OnRoad Mobilized When AtStation :

0.98

W

0.G /AIIocatedAmbuIance // AllocatedAmbulance / 90

Mobilized ByPhone Mobilized ByFax

6

L
W™

Identifying critical obstacle combinations: example

TABLE L. Violation severity for
Achieve [AmbulanceOnScenelnTimeWhenlIncidentReported]
Amb Amb. Amb.
Lm + | StuckIn | Broken EPS RDS SV
08 Traffic Down
1 1 1 92,77% 2,23%
1 1 0 93,20% 1,80%
0 1 1 94,54% 0,46%
1 0 1 94,61% 0,39%
95%
0 1 0 95,02% -0,02%
1 0 0 95,10% -0,10%
0 0 1 96,44% -1,44%
0 0 0 96,92% -1,92%
3 0 0
20 A
] 0 ~
()” 0 .

Violation Severity

0

Number of obstacles

l

2

aJ

<&

= Resolving obstacles
™~ g
~

& At RE time: integrate countermeasures in the goal model
- new or modified goals in goal model
- often to be refined

o For every critical obstacle ...
 explore alternative resolutions

« select “best” resolution based on ...
likelihood/severity of obstacle
non-functional/quality goals in goal model

o At system run-time: obstacle monitoring, run-time resolution
(non-severe, occasional obstacles) [Feather et al, 1998]

Obstacle Obstacle Obstacle
identification assessmen resolution

WheelsTurning
= 0 MotorReversed

Goal substitution: example

/ MovingOnRunway = o MotorReversed /

MovingOnRunway

X -

WheelsTurning
o MotorReversed

= 0 MotorReversed

NOT
\MovmgOnRunwa \ % MovingOnRunway <
< Wheels Turning PlaneWeightSensed

iAquapIaning\

/PIaneWeightSensed/

Maintain [SafeAccelerationComputed]

OnBoard
TrainController

Maintain [SafeAccelerationComputed]

OnBoard VitalStation
TrainController Computer

Maintain [TrafficControllerOnDutyOnSector]

Exploring alternative countermeasures (3)

¢ Goal weakening: weaken the obstructed goal so that the
weaker version is no longer obstructed

- for goal specs A=>€: add conjunct in A
add disjunct in €

/ Maintain [TrafficControllerOnDutyOnSector] /

<\

NOT

\ SectorControIIer\
OnDuty Maintain [TrafficControllerOnDutyOnSector]
or WarningToNextSector

Exploring alternative countermeasures ()

¢ Obstacle prevention:

- introduce new goal: Avoid [obstacle]
- to be further refined

- standard resolution tactics for security threats
Avoid [VulnerabilityCondition]

CommandReceived
SafelyByTrain

AccelerationCommand
Corrupted

/Avoid [AccelerationCommandCorrupted]/

Achieve
[ResourceReturnedInTime

Achieve [ReturnedWithFine
If Not InTime]

\§ Exploring alternative countermeasures (6)

¢ Obstacle reduction: reduce obstacle likelihood
by ad-hoc countermeasure

- |01 X
File Edit Yiew Tools Document Windows Help
RS BB %n 02 |Na B oEF®SE %S H|zombun
M v [B] (Obstacle) Obstacles totrain stops AN-F7 ¢ B

SRS

TrainStops IF StopSignal

I\

NoStopAtStopSignal

A\f

L7 BlockS)
7oBlockSy
© @ Blocks)
= BrakeS|

SignalNotVisible BrakeSystemDown
7]

7 DoorCli
& & Dpoorcl
L7 Doorsd

Brlwer g DPQOL

raDoorsQ
o é Doors(

[«

ﬂ (Obstacle) Obst...
| Documents

Pri
Name | Value

eme Obst]. o || RegularResponsivenessCheck
ockedTJ@ B

i][Modified | ofem g

Eastart”J] & S &) J $ehFausT-RED4 Ig[specs/train/TrainSys... (=] Microsoft PuwerPuint-[R...I |(‘j;%‘%‘y@ AREBE: 742

Exploring alternative countermeasures (7)

¢ Obstacle mitigation:

infroduce new goal o mitigate consequences of obstacle

- Weak mitigation:
new goal ensures weaker goal version when obstructed

,,"'Achieve [Attendance If Informed / ’{@@x}
! And MeetingConvenient] ! v

InformedAthonvenient
And NOT Attends

Achieve [Attendance If Informed
And MeetingConvenient
OR ImpedimentNotified]

Avoid [TrainCollision]

Maintain [Accurate
Speed/PositionEstimates]

Avoid [TrainCollision
WhenOutDated TrainInfo]

g
S

Strong

{f

mitigation: example

/ Avoid [MinersinFloodedMine] /

V4

strong mitigation

| flow exceeding the worst-case !
figure of X litres per hour. !

/PumpOn If HighWater/

LimitedWaterFIow\ /

Out If PumpOn

\
WaterPumped
/ ,
/
/
/

/ HighWaterDetected

/PumpOn If HighWaterDetected/ \ ExcessiveWaterFIow\

Y

PumpSwitchOn

\nghWater Not Detected \ /

If HighWaterDetected /

/ MineEvacuatedIfCritical\WWater /

PumpOn
Iff SwitchOn

MineEvacuated

e
p\\“

Not PumpSwitchOn

ighWaterDetected And\ PumpOn And\ \ SwitchOn And
Not SwitchOn \\ Not PumpOn

If WaterAlert

MinersAlerted
If CriticalWate
WaterAlarm

IncorrectOutput

WaterSensor Sump
Failure CloggedU
highWaterSignal
Corrupted FromController

ControllerOutput
Not InTime

If CrltlcaIWater/ /

MinersAlerted
If WaterAlarm

Pump
Failure

Threat analysis for more secure model

/’ / ItemOrderedByBuyer = {)_,, ItemReceivedByBuyer /

P ltemSent =
- ItemPaid

ItemOrdered = temPaid = / ItemSent =
Q29 ItemPaid Qm ItemSent .24 ItemReceived
ShippingCo
ItemPaid BELIEF(ItemPaid)
= (),,4 BELIEFg(ItemPaid) = ()., ItemSent
Seller
/ ItemPaid = NotificationReceived =
(.0, PaymentReceived 0 BELIEFg(ltemPaid)

Seller
PaymentReceived = / NotificationSent =
Q.u NotificationSent (..a, NotificationReceived

Threat analysis for more secure model

/ ItemOrderedByBuyer = {_,, ItemReceivedByBuyer /
/ ItemSent /— ltemSent —

A = ItemPaid tomPaia
ItemOrdered = / / ItemPaid = / ItemSent =
Q29 ItemPaid (24 ItemSent .24 ItemReceived
ShippingCo
ItemPaid BELIEF(ItemPaid)
= (.10 BELIEFg(ItemPaid) = (),,q ItemSent
Seller
/ ItemPaid = NotificationReceived =
Q.sn PaymentReceived 0 BELIEF(ItemPaid)

PaymentReceived = / NotificationSent => siellizr
Q. NotificationSent / / (), NotificationReceived

Threat analysis for more secure model

ItemSent = ltemSent —
A - ItemPaid KomPaia

ItemSent =
V<aq ItemReceived

'rr C','S/ ItemPa‘d/ / BELIEF (ItemPaid) /

C On
d eonf ItemPaid BELIEF(ItemPaid) /+
= (214 BELIEFg(ItemPaid) = ,m ItemSent

NotificationReceived
ItemPaid = NotificationReceived =
(s, PaymentReceived 0 BELIEFS(Iteumd)
PaymentReceived = / NotificationSent = / ¢ _. . FakeNotificSent /
Q.u NotificationSent / / {)_,, NotificationReceived Attacker

Model completed with countermeasures

ItemOrderedByBuyer = {) ItemReceivedByBuyer

ItemOrdered = ItemPaid = / ItemSent =
{ ItemPaid { ItemSent {) ItemReceived
‘ / BELIEF(Seller, ItemPaid)
ItemPaid ‘ = () ItemSent
5 Achiev? - ConfirmRequested
{Beli
ItemPaid = orrectbene A PaymentConﬁrme(.l

e e = () BELIEF((ItemPaid)

. NotifReceived =
aymentReceived = / / 0
{) NotificationSent

A PaymentReceived

— () PaymentConfirmed / qupql

ConfirmRequested / ConfirmRequested

/ NotificationSent < Seller
{) NotificationReceiv

Conclusion

o It isimportant to verify that your software implements
its specs correctly... BUT ...

¢ ... are those specs meeting the software requirements
(including non-functional ones) ?

¢ ... are those requirements meeting the system's goals ?
.. under realistic assumptions ?

¢ ... are such goals, requirements & assumptions complete,
consistent, adequate and realistic ?

this is a critical though still largely unexplored area
with many challenging issues for formal methods

Much, much more info in ...

Axel van Lamsweerde

£ e R T’
- [7] f)

Requirements
Engineering

o . . . = - L
< From System Goals to UML Models to Software Specifications)
P — R

Wiley, 2009

Fruitful bedtime reading

A. van Lamsweerde & E. Letier, “Handling Obstacles in Goal-Oriented
Requirements Engineering”, IEEE Transactions on Software Engineering,
Special Issue on Exception Handling, Vol. 26, No. 10, October 2000.

D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo, S. Uchitel, Generating
Obstacle Conditions for Requirements Completeness, Proc ICSE’ 2012 - 34th
Intl Conf on Software Engineering, Zurich, June 2012, ACM-IEEE.

A. Cailliau & A. van Lamsweerde, A Probabilistic Framework for Goal-Oriented
Risk Analysis, Proc. RE'2012: 20t TEEE Intl Conf. on Requirements
Engineering, Chicago, Sept. 2012,

A. van Lamsweerde, “Elaborating Security Requirements by Construction of
Intentional Anti-Models”, Proc ICSE 04 - 26th Intl Conf on Software
Engineering, Edinburgh, May 2004, ACM-IEEE, 148-157.

A. van Lamsweerde, R. Darimont & E. Letier, Managing Conflicts in Goal-Driven
Rquirements Engineering, IEEE Transactions on Software Engineering, Vol. 24
No. 11, November 1998, pp. 908 - 926.

Fruitful bedtime reading (2)

R. Darimont & A. van Lamsweerde, “Formal Refinement Patterns for Goal-Driven
Requirements Elaboration”. Proc. FSE-4 - Fourth ACM Conf on Foundations of
Software Engineering, San Francisco, Oct. 1996, 179-190.

E. Letier & A. van Lamsweerde, “Agent-Based Tactics for Goal-Oriented
Requirements Elaboration”, Proc. ICSE 2002 - 24th Intl Conf on Software
Engineering, Orlando, May 2002, TEEE CS Press, 83-93.

E. Letier & A. van Lamsweerde, “Deriving Operational Software Specifications
from System Goals”, Proc FSE'2002 - 10th ACM Conf on the Foundations of
Software Engineering, Charleston (South Carolina), November 2002.

A. van Lamsweerde and L. Willemet, Inferring Declarative Rquirements
Specifications from Operational Scenarios, IEEE Transactions on Software
Engineering, Vol. 24 No. 12, December 1998, pp. 1089 - 1114,

E. Letier and A. van Lamsweerde, “Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering”, Proc FSE 04, 12th ACM Int/ Symp.
Foundations of Software Engineering, Newport Beach (CA), Nov. 2004, 53-62.

