
Richard Paige
(with Dimitris Kolovos)

@richpaige, @dskolovos, @epsilonnews
Department of Computer Science, University of York, UK

Model Transformations
for Fun & Profit

Structure of Lectures

1. Foundations of Model Driven Engineering
 Motivation; definitions.

 What is it; why should we care; principles?

2. Overview of Model Transformations
 Characteristics and features

 Model-to-model and model-to-text transformations.

3. Advanced Model Transformations
 Update-in-place

 Migration transformations

 Merging transformations

4. Applications.

Structure of Lectures

1. Foundations of Model Driven Engineering
 Motivation; definitions.

 What is it; why should we care; principles?

2. Overview of Model Transformations
 Characteristics and features

 Model-to-model and model-to-text transformations.

3. Advanced Model Transformations
 Update-in-place

 Migration transformations

 Merging transformations

4. Applications.

What is MDE?

It’s Not Really…

Though …

 Conceptually, MDE’s ultimate goal is the
same as that of formal methods.

 i.e., build more reliable, robust, acceptable,
available, etc, systems.

 Reliance on abstraction and separation of
concerns.

 Reliance on tools to construct, manipulate and
validate descriptions.

 MDE mechanisms for implementation differ
from those of formal methods.

It’s not…

class MySession : public

SNMPSession {

public:

virtual void

processTrap(const SNMPObject

& obj) {

std::cout <<

obj.getDisplayInformation() <<

"\n";

}

};

MySession session;

SNMPRemoteAgent

ragent(host, community, 0,

&session);

SNMPTrap trap(oid, &ragent);

trap.enable();

Though…

 Code generation (model-to-text) is a
legitimate, if obvious, scenario of use.

 There are many other legitimate, valuable
and important scenarios

 (and we shall see some later).

Model Driven Engineering

 A principled approach to system engineering

 Promotes models to first-class artefacts

 More than documentation

 Models are structured and living entities that
are amenable to automated processing

 Validation, transformation, comparison, merging,
refactoring, code generation etc.

 They are structured in very specific ways.

Dependability?

 What has this got to do with dependability?

 Automation of repetitive, error-prone engineering
tasks.

 Constructing accurate and acceptable descriptions
of phenomena of interest.

 Mechanisms for relating engineering artefacts
(largely automatically)

 cf traceability

 to feed in to audit, certification, validation…

A (simplified) MDE scenario

A Transport Project

 A transport organisation has a legacy railway
interlocking model in an old version of xUML.

 They want to do the following:
 Load the legacy xUML model (do not underestimate this)

 Migrate it to UML 2.x

 Do:

 Validate the model;

 Generate a simulation model;

 Generate an HTML report;

 Apply some refactorings

 Until false

In Pictures

MDE is all about managing
and manipulating models.

Foundations of Model
Management

Models ≠ UML diagrams

 UML is just one modelling language

 Though a very popular one.

 Most domains have different
abstractions/semantics

 Domain Specific Modelling Languages (DSMLs)

 … but also general-purpose languages as well.

 Models ≠ Pictures

 Models can be graphical or textual

 ... And are often both

Model of application communications

Model of an Astute submarine

Model of a Missile Controller

Model of a Castle

Model of an Actor

Model of Friend Relationships

Model of Mongo

Maps

ModelrepOfSystem

Beer Map

Largest « Thing » Map

Canada circ. 1955

Apocalypse

map

The System

Example idea by Jean Bezivin

Courtesy of Jean Bezivin

Every map has a legend

The legend

Same visual notation,

different context,

different meaning

(Thick red

dotted lines

for bicycle lanes)

is called a metamodel.

Synthesis

 Support for different languages is critical in
MDE.
 General purpose, domain specific, obsolete…

 Sometimes we need to support all of the above in one
project.

 We use structure (metamodels) to enable
model management.

 We’ll see more on metamodels and
metamodelling shortly.

Synthesis - Implementation?

 How are models and metamodels typically
implemented?

 EMF/Ecore is the most popular (graphs).

 MDR/MOF (graphs).

 XML [schema-ful and schema-less] (trees)

 Proprietary formats (graphs, DBs).

 You shouldn’t have to care about this when
managing your models.

 Except perhaps when things get REALLY big.

Synthesis - Semantics

 What’s the semantics of these models?

 Plausible answers:

 Use mathematics as we normally do.

 Via transformations to something we understand.

 Wrong question; what do you want to do with
your models?

 Semantics is a modelling problem.

 Semantics in MDE is purpose-driven.

 Do not mistake UML’s weak semantics (for
verification) as a general illness!

Metamodelling

What is a metamodel?

 A description of a language.

 Models are instances of this language.

 (Sentences, in EBNF terminology.)

 Most typically, a metamodel is a description
of the abstract syntax of a language.

 Concepts, structures and constraints.

 Not usually the tokens, lexemes, symbols, blobs…

What is a metamodel?

 It’s also a model.

 This is the so-called unification property of
MDE: everything’s a model.

 So, in principle, models, metamodels and lots of
other things can be implemented and managed
using one set of tools.

 In practice this is mostly true.

 However, it’s convenient and pragmatic to take
short-cuts if you want to build big systems.

Metamodelling

 Metamodelling is at the heart of MDE.

 Without a metamodel, we cannot automatically
manipulate models.

 So how do we construct metamodels?

 What do they look like?

 What’s a typical process?

 Example.

A Model

When to Metamodel?

 If we’re constructing a one-off model, there’s
no point in constructing a metamodel.

 For example:

 if we’re only interested in describing Elvis, there’s
little point investing any effort in constructing a
metamodel that allows us to describe Elvis.

 However, if we’re interested in different
musicians, a metamodel could be useful.

A Metamodel for Musicians

 A metamodel for musicians will let us
describe Elvis.

 And other musicians; all are instances.

 It will let us express the concepts and
constraints of musicians that are important.

 For some purpose(s).

 E.g., animation, simulation, comparison,
reasoning.

 In essence it will define a language for talking
about (and manipulating) musicians.

Instances

Abstract Syntax

 Metamodelling starts with thinking about:

 What are the key concepts of musicians?

 It may help to think about what you want to
do with the models that you will ultimately
produce – i.e., their purpose.

 Key concepts:

 Name, style, behaviour, do they play instruments,
do they sing?

 Purposes: animation, simulation, comparison

Finding Concepts?

 Michael mentioned noun-verb analysis
yesterday.

 Use it as a first-pass approximation.

 It can find useless or redundant concepts.

 … and can miss some of the important ones.

 But it’s fine to start with.

 Better to write something down and shout about
it than to shout about nothing…

Constraints

 Ask what constraints you want to capture of
your descriptions.

 In other words, are there restrictions on the
concepts?

 This will help clarify constraints on your models
and operations on your models.

 E.g., Elvis can’t simultaneously move his left leg in
and his left leg out.

Metamodel (First-Pass)

context Leg inv: self.in <> self.out

A metamodel (adding ops)

What are the next steps?

 Concrete syntax:

 Usually derived from abstract syntax.

 Graphical or textual?

 Depends on what you want to do with models.

 vs

What are the next steps?

 Operations applied to models.

 Simulation

 Transformation

 Producing text

 Comparison

 Model management

Model Management Tasks

(What do you want to do to your
models?)

Marvel Comics

What tasks?

 Transforming models

 Generating text from models

 Refactoring models

 Merging models

 Validating models

 Comparing models

 Migrating models as a metamodel changes

 Querying and modifying models

 Chains

How are model management tasks
supported?

Model Management

 Manipulate your models directly.

 Invariably, XML/XMI manipulation.

 Write XSLT, Java...

 Build an API…

 Use standard, general purpose MDE
languages.

 E.g., Object Constraint Language.

 Use task-specific languages, e.g., ATL, QVTo,
Tefkat, KerMeta, …

Languages for MDE

 Inconsistent syntaxes

 Different expression dialects

 Different ways to perform model
navigation/modification

 End up writing the same code in many languages

 Poor integration and interoperation

 E.g. validation -> M2M -> M2T

 Recurrence of bugs / missing features

Example: Checking for
a UML stereotype

OCL (Model validation)

package uml

context Element

def Operations:

let hasStereotype(s : String) : Boolean

= getAppliedStereotypes()->

exists(st | st.name = s)

endpackage

ATL (M2M Transformation)

helper context UML2!Element def :

hasStereotype(s : String): Boolean

self.getAppliedStereotypes()

->exists(st | st.name = s);

MOFScript (Code Generation)

uml.Element::

hasStereotype(s : String): Boolean {

result = self.getAppliedStereotypes()

->exists(st | st.name = s);

}

Languages for MDE

There is hope…

: a family of
integrated programming
languages for managing
models

• Extensible.
• Interdependent.
• Task-specific.
• Technology agnostic.
• Scalable.

 Mature project

 Under Eclipse.org
since 2006

 Well-documented

 Examples, articles,
screencasts, book

 Substantial user base

 1000s of posts in the
forum

Used in

Architecture of

Features

 Languages for a range of model management
tasks

 Languages have consistent syntaxes

 Can manage models from different
metamodels / modelling technologies

 Can call methods of Java objects

 Strong integration with EMF and GMF

 Eclipse-based development tools

 Editors, Launching facilities

 Download

 www.eclipse.org/epsilon

 Documentation

 www.eclipse.org/epsilon/doc

 www.eclipse.org/epsilon/doc/eugenia

 Screencasts

 www.eclipse.org/epsilon/cinema

 Twitter: @epsilonews

http://www.eclipse.org/epsilon
http://www.eclipse.org/epsilon/doc
http://www.eclipse.org/epsilon/doc/eugenia
http://www.eclipse.org/epsilon/cinema
http://www.twitter.com/epsilonews

Synthesis – Pub Talk

 Model versus specification?

 No real difference.

 Model versus program?

 Again, no real difference.

 They are both abstractions of something, created
for a purpose.

 MDE is all about enabling the construction of
languages that are fit for specific purposes.

Schematically

Load xUML
model

Migrate
model to UML

2.x

Validate
model

Generate
simulation

model

Generate
HTML report

Next time

 Model transformation.

 Classification.

 Examples.

 Model transformation with Epsilon.

 Advanced model transformation.

 Applications.

MDE versus Formal Methods?

MDE Formal Methods

Language
syntax

• Emphasis on abstract
syntax

• Emphasis on concrete
syntax

Language
implementation

• Uses standardised
infrastructure.

• Some commonly used data
structures/algorithms.

Language
semantics

• Defined for specific
purposes, potentially
governed by constraints.

• Mathematics or
transformation

• Defined for analysis,
soundness, completeness,
…

• Mathematics

Tools • For modelling & model
management.

• The first priority.

• For modelling & analysis.
• Historically came second;

not today.

Richard Paige
(with Dimitris Kolovos)

@richpaige, @dskolovos, @epsilonnews
Department of Computer Science, University of York, UK

Model Transformations
for Fun & Profit

Structure of Lectures

1. Foundations of Model Driven Engineering
 Motivation; definitions

 What is it; why should we care; principles?

2. Overview of Model Transformations
 Characteristics and features

 Model-to-model and model-to-text transformations.

3. Advanced Model Transformations
 Update-in-place

 Migration transformations

 Merging transformations

4. Applications.

Recap

 Models:

 Abstractions of something, created for a purpose.

 Amenable to automated processing by tools.

 Created using metamodelling technology.

 Metamodels:

 “Models of models”.

 Define languages used for modelling.

 Focus on abstract syntax.

 Basis for automated processing of models.

 Model management:

 Tasks we want to carry out on models.

Model Transformation

 “The heart and soul of MDE.”

 Basic scenario:

 a model (in one language) is transformed into a
model in a (possibly) different language.

 Multiple inputs, multiple outputs also possible.

 Obvious MDE workflow:

 Construct an abstract model.

 Successively transform it until a sufficiently
detailed model is produced.

 Generate code from the detailed model.

Applications of MT

 Elaboration: generating detailed models or
code from less detailed models.

 Synchronisation: ensuring consistency
between models at the same or different
levels of abstraction.

 View creation: producing query-based views.

 Model evolution (including refactoring)

 Abstraction: generating less detailed models
from more detailed ones.

Transformations are not …

 … necessarily semantics preserving.

 They can be, but there are useful transformations
that are “lossy”.

 … necessarily refinements.

 They can be (especially update-in-place
transformations) but many useful ones aren’t.

 … necessarily specified in a way that allows
interesting properties to be checked of them.

 Sometimes they must be transformed!

Standards and Tools

 OMG Query/Views/Transformations (QVT).

 Operational, Relational and Core languages.

 Reference implementations still developing.

 Lots of complexity and ambiguity!

 Industrial-strength and mature MT tools:

 VIATRA2, Tefkat, GReAT, GReTL, ATL, Epsilon,
KerMeta, …

 We will illustrate transformations using Epsilon
(selfishly).

Basic Concept

Example Transformation

Example Transformation

1. Every UML package should be mapped to a
RDBMS schema with the same name.

2. Every (persistent) class should be mapped to
a table with the same name.

1. Table should have a primary key column with the
type NUMBER and the name being that of the
class with _tid appended.

3. UML attributes should be mapped to
appropriate columns (related via foreign key
definitions).

Part of an ETL Example

rule Class2Table

transform c : UML!Class

to t : DB!Table

extends ModelElement2NamedElement {

guard : c.hasStereotype(‘table’) and

Sys.user.confirm(‘Transform ‘ +

c.name + ‘?’)

t.database ::= c.namespace;

var idCol := new DB!Column;

idCol.name := ‘id’;

t.columns.add(idCol);

}

What is this?

 It’s a model transformation written using the
Epsilon Transformation Language (ETL).

 A task-specific language.

 Part of the Epsilon platform.

 It implements one of the rules mentioned
earlier.

 It demonstrates a specific type of model
transformation.

 Mapping.

 There are many others!

Classification of MT

 Czarnecki and Helsen wrote a seminal paper
on classifying model transformations.

 Rigorous approach, using feature diagrams.

 Covered all important top-level features
(circa 2006) of transformations.

 Didn’t elaborate some parts in detail.

 Consider parts of the classification.

Top-level Features

Some Key Features

 Specification:

 Some approaches mandate a particular
specification mechanism (e.g., pre/post).

 Some specifications may be executable (e.g.,
functional ones); others may be full relations and
are not executable (e.g., original QVTr).

 Transformation Rules:

 The “smallest unit” of transformation.

 E.g., rewrite rules, function/procedure
implementing a transformation step.

Some Key Features

 Rule application control:

 How are transformation rules scheduled and
executed?

 How are salient locations of the model
determined, against which rules are executed?

 Directionality:

 Can rules be executed in one direction only, or in
multiple directions (e.g., bidirectional)?

Location Determination

Rule Scheduling

 Can engineers indicate order in which rules
are executed?

 Are there phases?

 Are there iteration mechanisms?

Types of Transformations

 Two broad categories:

 Model-to-Model

 Results are instances of metamodels.

 Model-to-Text

 Results are strings.

 Many specialisations of each.

Model-to-Model Approaches

 Direct manipulation:

 Have some API (e.g., JMI) that lets you directly
manipulate model representations.

 You have to implement all your features from
scratch (often).

 Structure-driven:

 Two-phase approaches.

 1) Create hierarchical structure of target model; 2)
populate its attributes and references.

Model-to-Model

 Operational approaches:

 Use an operational language with metamodelling
support to transform models.

 E.g., KerMeta, QVTo, EOL.

 Relational approaches:

 Use a declarative language with metamodelling
support to transform models.

 E.g., QVTr, Tefkat, AMW, …

Model-to-Model

 Graph transformation:

 Treat models as attribute graphs.

 Graph transformation rules (e.g., TGGs)

 E.g., VIATRA, AGG, AToM3, GReAT, GReTL.

 Hybrid:

 Combining declarative and operational
approaches.

 E.g., ATL, ETL (Epsilon in general)

Model-to-Text

 Visitor-based approaches:

 Provide a visitor mechanism to traverse internal
model structure and produce text to a stream.

 Need to mess with internal structures.

 Template-based approaches:

 Most popular.

 Have static and dynamic regions; static regions
copied, dynamic regions generate output.

 E.g., MOFscript, JET, oAW, EGL, …

Illustrations

 We’ll illustrate some of these model
transformation concepts by examples of
languages from the Epsilon platform.

 Motivation for Epsilon.

 Conceptual architecture.

 Core concepts (and their relationship to the
classification).

 Model-to-Model

 Model-to-Text.

: a family of
integrated programming
languages for managing
models

Architecture of

EPSILON

Core Languages : The Epsilon Object
Language

EOL: Overview

 Dynamically and strongly typed

 Object-oriented

 Modular

 Primitives, collections and model elements
are objects

Play with EOL in your browser:
www.eclipse.org/epsilon/live

http://www.eclipse.org/gmt/epsilon/live

Design for EOL

 What do model management operations
have in common?

 i.e., transformation, query, merge, generate
code, validate, etc.

 After some reflection:

1. They all require the ability to navigate models
(e.g., to go from class to class, node to node, line
of code to line of code).

2. Many require the ability to modify models.

Navigation

 Navigation is something that the OMG’s Object Constraint
Language (OCL) is really good at.
 It’s abstract and declarative.

 It allows very concise navigation expressions to be written.

 e.g., self.processor_rack.process

 But it’s restricted to the OMG’s standards.
 How would it apply to Z specs, or a blob-and-line variant?

 It also doesn’t allow model modification.
 ... and there are other substantial difficulties...

EOL

 Borrows navigation expressions (and some
basic operations) from OCL.

 Borrows conceptually from Javascript.

 Adds assignment statements, sequencing,
and multiple model access.

 … plus some other stuff.

EOL: Types

 Four primitive types:

 String, Integer, Real and Boolean

 Four collection types:

 Bag, Sequence, Set and OrderedSet

 Universal type: Any
 isDefined(), isUndefined()

 isTypeOf(type:Type),

isKindOf(type:Type)

EOL: Operations

 Collection types provide (side-effect free)
higher-order operations

 select(), reject()

 collect(), exists()

 Ability to define custom operations

 Can have context, i.e. called using dot notation

 Optional return type

EOL: Other

 User input: System.getUser()
 .inform(), .choose(), .chooseMany(),

.confirm(), .prompt(), .promptInteger(),

.promptReal()

 Platform independent.

var model : UML!Model;

model = new UML!Model;

model.name = ‘TestModel’;

var i : Integer;

for (i in Sequence{1..3}){

var class : new UML!Class;

class.name = ‘TestClass’ + i;

class.visibility = UML!VisibilityKind#vk_public;

class.namespace = model;

}

Basic Features of EOL
Define a model

variable

Instantiate the

model variable
Assign a name

to the model

Define an

iterator

for i = 1 to 3

Define and

instantiate a

class variableAssign a name

to the class
Set the class

visibility to

public

Set the

namespace of

the class to be

the model

Slide 102

Access to Multiple Models

 Many model management tasks, such as

transformation or comparison, require

simultaneous access to multiple models.

 To support this, EOL employs the <Model

Name>!<Meta-class> syntax.

for (class in UML!Class.allInstances()){

if (DBMS!Table.allInstances().exists(table|table.name == class.name)){

(‘Found matching table for class ‘ + class.name).println();

}

else {

(‘Not found matching table for class ‘ + class.name).println();

}

}

EOL Summary

 Effectively, all model management can be
done in EOL.

 (Or Java… but…)

 Operational model transformations can (and
have) been written in EOL.

 But EOL doesn’t possess task-specific
constructs for transformations.

 There are repeated patterns that arise with any
transformation.

EPSILON

The Essential Languages: Transformation,
Generation

Friends

isFriendOf

acknowledges

http://images.google.co.uk/imgres?imgurl=http://www.maxconsole.net/content_img/mc_psp_morbo.jpg&imgrefurl=http://www.maxconsole.net/?mode=content&itemid=194&h=254&w=272&sz=27&hl=en&start=1&um=1&tbnid=8U5XrkpnXsWzQM:&tbnh=106&tbnw=113&prev=/images?q=morbo&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.crimsonmyst.com/photos/chipmunk.jpg&imgrefurl=http://gheefreak.livejournal.com/&h=508&w=450&sz=53&hl=en&start=1&um=1&tbnid=LMOWbJ5aCNItJM:&tbnh=131&tbnw=116&prev=/images?q=chipmunk&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en
http://images.google.co.uk/imgres?imgurl=http://www.scifimoviepage.com/upcoming/photos/ironman1.jpg&imgrefurl=http://emotional-feeling.blogspot.com/2008/04/iron-man.html&h=1527&w=1038&sz=200&hl=en&start=15&um=1&tbnid=oc_tUUp7LYkqbM:&tbnh=150&tbnw=102&prev=/images?q=iron+man&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en
http://images.google.co.uk/imgres?imgurl=http://dalailama.com/images/pgallery/printable5.jpg&imgrefurl=http://theleadershipspace.blogspot.com/2007/12/hh-dalai-lama.html&h=3642&w=2400&sz=3951&hl=en&start=5&um=1&tbnid=3VciNX5st1k3VM:&tbnh=150&tbnw=99&prev=/images?q=dalai+lama&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en&sa=N

Enemies

isEnemyOf

tolerates

http://images.google.co.uk/imgres?imgurl=http://www.rhodesfamily.org.uk/blog/2005/09/pix/dastardly.gif&imgrefurl=http://www.rhodesfamily.org.uk/blog/2005/09/skullduggery.html&h=150&w=129&sz=9&hl=en&start=6&um=1&tbnid=NCFHWuBiZaf3vM:&tbnh=96&tbnw=83&prev=/images?q=dick+dastardly&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.britishsupermarketworldwide.com/acatalog/chocolate_selection.jpg&imgrefurl=http://www.britishsupermarketworldwide.com/acatalog/Cadburys_Chocolate.html&h=1062&w=1078&sz=132&hl=en&start=5&um=1&tbnid=_wAVt8UxeUNXxM:&tbnh=148&tbnw=150&prev=/images?q=chocolate&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en
http://images.google.co.uk/imgres?imgurl=http://www.ecophotoexplorers.com/images/cousteau.gif&imgrefurl=http://www.ecophotoexplorers.com/JacquesCousteau.asp&h=268&w=229&sz=24&hl=en&start=2&um=1&tbnid=UzQtl7_xLkvuGM:&tbnh=113&tbnw=97&prev=/images?q=jacques+cousteau&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en
http://images.google.co.uk/imgres?imgurl=http://www.visitingdc.com/images/richard-nixon-picture.jpg&imgrefurl=http://www.visitingdc.com/president/richard-nixon-picture.htm&h=336&w=325&sz=23&hl=en&start=1&um=1&tbnid=rcrt6fmabc7VdM:&tbnh=119&tbnw=115&prev=/images?q=richard+nixon&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en
http://images.google.co.uk/imgres?imgurl=http://images.amazon.com/images/P/0802135196.01.LZZZZZZZ.jpg&imgrefurl=http://reader2.com/jmhender/?skip=&style=blocks&perpage=60&sort=date&h=475&w=319&sz=25&hl=en&start=4&um=1&tbnid=QuhBZYTqNZmz_M:&tbnh=129&tbnw=87&prev=/images?q=jacqueline+susann+novel&um=1&hl=en&rls=GGLG,GGLG:2005-40,GGLG:en
http://www.iso.org/iso/home.htm

Language Definitions

name

Friend

acknowledges *

isFriendOf

*

name

Enemy

tolerates *

*

*

isEnemyOf

*

Language FriendMap Language EnemyMap

EPSILON
Core Languages: The Epsilon Generation Language

EGL: Overview

 Model-to-text transformation language

 Two types of sections

 Static: content appears verbatim in generated
text

 Dynamic: executable code (EOL)

 Templates

 Generate files

 Protected regions

 Beautification

EGL – A Template Language

 EGL is a template language (e.g. PHP)

[% for (i in Sequence{1..5}) { %]

i is [%= i %]

[% } %]

 Dynamic sections: contents executed

 Static sections: contents appear verbatim in output

EGL – Preprocessor for EOL

 EGL is minimally derived from EOL

[% for (i in Sequence{1..5}) { %]

i is [%= i %]

[% } %]

becomes:

for (i in Sequence{1..5}) {

out.print('i is '); out.println(i);

}

EGL – Feature Summary

 Common M2T language features:
 Support for defining and utilising protected regions

 Beautification

 Traceability

 Novel / uncommon features
 Co-ordination engine: encourages decoupling

 Strong integration with other model management
languages

EGL – Readability

 Templates should be readable
 But so should generated text

 Philosophy: make templates readable
 And run a post-processor on the generated text

 Beautifiers provided for Java and XML
 Extensible; invoked via Epsilon workflow

 Similar concept available in Xpand

EGL - Co-ordination

 Encourages decoupling of destination and content

 No “file” construct in EGL

 Instead, templates are types in the language

 File-generating template:

o Can be stored to disk, supports merging

 Socketed template:

o Contents written directly to a network socket

Example: Nixon’s Enemy List

[% var rmn = EnemyMap!Enemy.all().

select(e | e.name = ‘Richard Nixon’); %]

Richard M. Nixon\’s Enemy List

[% for (e in rmn.isEnemyOf) { %]

I hate [%= e.name %]

[% } %]

will produce

Richard M. Nixon’s Enemy List

I hate Dick Dastardly
I hate the Novels of Jacqueline Susann

EPSILON
Core Languages : The Epsilon Transformation
Language

ETL: Overview

 Model-to-model transformation language

 Hybrid language (declarative and imperative
parts)

 Arbitrary number of source/target models

 Traceability

ETL: Overview

 Rule-based

 Optional guards

 Reuse via rule extension

 Abstract, primary, lazy annotations

 Can be interactive

 Pre and post blocks

ETL: Overview

 Execution

 Pre blocks

 Non-abstract, non-lazy (applicable) rules

 Post blocks

 .equivalents() and .equivalent()

 Resolves source elements to their target
counterparts

 Invokes both lazy and non-lazy rules

 Shorthand ::=

ETL Example

rule EnemyBecomesFriend

transform e : EnemyMap!Enemy

to f : FriendMap!Friend {

guard: UserInput.confirm(‘Is your enemy ’+

e.name + ‘ now a friend?’)

f.name = e.name;

f.acknowledges ::= e.tolerates;

}

Perspective

 Some M2M approaches take the view that
the transformation should (provably)
preserve desirable properties.

 “Correctness” or “Consistency” is a favourite.

 We take the perspective that:

 A transformation does the transformation.

 A validation (e.g., OCL, EVL, …) checks that your
model obeys properties.

 Separation of concerns.

Semantics?

 What do transformations mean?

 Good question!

 A M2M transformation defines a relation between
source and target model.

 In fact, Epsilon generates these relations (traces!)
automatically – cf Manfred’s “dynamic traces”.

 Use this to reason about/validate transformations.

 Started ongoing work on formalisation via
UTP.

Open Research Areas?

 Semantics of transformations.

 Generic patterns/templates and specific ones.

 Engineering processes for transformations.

 Validation of transformations.

 Coverage measures for testing
transformations.

 “Learning” transformations from
metamodels and examples.

Fun Epsilon Facts!

 Biggest Epsilon programs?

 7KLOC for acquisition support

 20KLOC for validation of TDL model

 4KLOC for interlocking transformation in ETL

 3KLOC for bidirectional transformation

 1.2KLOC for EuGENia

 Strangest program so far?

 Twitter client written in EOL.

 Super Awesome Fighter.

 (In progress…) Dancing Robot Elvis.

?

Program vs Model Transform?

 Many of the concepts of program
transformation apply to model
transformation.

 Program transf typically applies to tree structures.

 Model transformation:

 Applies to graphs (in a standardised format)

 Multi-way transformation.

 Traceability from sources to targets.

 Multi-directionality.

Example

The Epsilon Object Language : Animating a
flowchart

Flowcharts: Example

EOL: Example

var flowchart : Flowchart := Flowchart.all.first(); // Get flowchart; grab initial node

var state : Node = flowchart.nodes.select(n | n.incoming.size() == 0).first();

state.name.println('-');

while (state.outgoing.size() > 0) {

if (state.isTypeOf(Decision)) {

var tran:Transition=System.getUser().chooseMany(state.name, state.outgoing).first();

if (tran.isUndefined()) { break; }

tran.name.println('--');

state = tran.target;

} else if (state.isTypeOf(Action)){

state = state.outgoing.first().target;

}

state.name.println('-'); // Print new node name

}

'Simulation complete.'.println();

EPSILON
Core Languages : The Epsilon Validation Language

Model-to-text classification

 Not refined/detailed in Czarnecki et al’s
paper.

 See Rose et al, MiSE 2012 proceedings.

EVL: Overview

 Specify and evaluate constraints on models
 Context: specifies the type over which the invariants

will be evaluated
 Optional guard

 Invariant – constraint vs critique
 Can be lazy
 Optional guard
 Fix
 Message

 .satisifies(), .satisfiesAll(),
.satisfiesOne()

 Pre and post blocks

EVL: Overview

 Execution

 Pre blocks

 Each context evaluated

 User presented with any failure messages and
asked to select a fix

 Post blocks

Epsilon Validation Language
 Applications include:

 Checking that a model obeys essential properties.

 Critiquing a model.

 Repairing a model that is ill-formed or that has been updated
improperly.

 Checking that different models are consistent.

 Some features of EVL are:
 Separation between critical and non-critical constraints

 Context-aware human-friendly messages when constraints fail

 Dependencies among constraints

 Ability to repair inconsistencies

EVL Example
context FriendMap!Friend {

constraint MyFriendIsNotMyEnemy {

guard: self.name<>’’
check: not EnemyMap!Enemy.all.exists(e|e.name=self.name)

message : ‘My friend ‘ + self.name +‘ is also my enemy.’

fix {

title : ‘I welcome my former enemy ’+self.name

do {

var formerEnemy: EnemyMap!Enemy;

formerEnemy = EnemyMap!Enemy.all.selectOne(e|

e.name=self.name);

delete formerEnemy;

}

}

fix {

title : ‘I shun my former friend ’ +self.name

do { delete self; }

}

}

Continued…

@abstract

rule ModelElement2NamedElement

transform s : UML!ModelElement

to t : DB!NamedElement {

t.name := s.getDBName();

}

@cached

operation UML!NamedElement getDBName() : String {

if (self.isTypeOf(UML!Class))

return ‘T_’ + self.name;

else

return self.name;

}

Features

 Languages for a range of model management
tasks

 Languages have consistent syntaxes

 Can manage models from different
metamodels / modelling technologies

 Can call methods of Java objects

 Strong integration with EMF and GMF

 Eclipse-based development tools

 Editors, Launching facilities

motivation

before epsilon...

Languages for MDE

 Inconsistent syntaxes

 Different dialects of OCL

 Different ways to perform model
navigation/modification

 End up writing the same code in many languages

 Poor integration and interoperation

 E.g. validation -> M2M -> M2T

 Recurrence of bugs / missing features

Refinement of Top-Level Diagram

 Domain: that part of a rule responsible for
accessing one of the source models.

 Includes ways of specifying whether source
models are read-only, etc.

 Syntactic separation: are domains kept
syntactically separate (e.g., rewrite rules)?

Richard Paige
(with Dimitris Kolovos)

@richpaige, @dskolovos, @epsilonnews
Department of Computer Science, University of York, UK

Model Transformations
for Fun & Profit

Structure of Lectures

1. Foundations of Model Driven Engineering
 Motivation; definitions.

 What is it; why should we care; principles?

2. Overview of Model Transformations
 Characteristics and features

 Model-to-model and model-to-text transformations.

3. Advanced Model Transformations
 Update-in-place

 Migration transformations

 Merging transformations

4. Applications.

Recap

 MDE and model transformations.

 Classification of different kinds of
transformation:

 Model-to-model

 Model-to-text

 Illustrations using Epsilon.

The ‘Debate’

 Manfred and I were debating two options:

1. Prove your transformation is semantics
preserving (e.g., weak bisimilarity,
equivalence, refinement…) viz Hulsbusch,
Rensink et al.

2. Run-time checks of equivalence between
source/target models, viz Karsai et al.

 Both approaches arguably are needed.

Why?

 Some transformations must be correct
(engineered to the highest quality).

 Largest examples in literature? Varro (SC2PN),
Hulsbusch et al (about 5 rules).

 Some can be acceptable and useful without a
full correctness proof.

 Some transformations are so complex that a
correctness proof is impractical.

 So we monitor via tracebility.

Update-in-Place

Update-in-Place

 Model-to-model transformations come in a
number of flavours:

 Mappings: from a source to target model
expressed in different languages.

 Usually when languages are similar.

 Update: perform in-place modifications to a
model (source/target languages are identical)

 -in-the-large: apply to large sets of elements
calculated using well-defined rules.

 -in-the-small: user-driven

Update-in-Place

 In general, these transformations
automatically create, update or delete model
elements.

 Information needed is obtained from users.

 Actions taken are generally referred to as
wizards (to distinguish them from rules).

Typical Requirements

 Wizards must be able to specify:

 Actions to apply to model elements

 Selection of applicable model elements

 Labelling

 Some means of connecting wizards with a user
interface.

 Easiest if a relatively standard architecture is used,
e.g., MVC.

Epsilon Wizard Language (EWL)

 Wizards have names, a guard, an executable
title (more soon), and a set of statements.

 All reused from EOL.

Example Wizard

wizard ExtractInterface {

guard : self.isKindOf(Class)

title : ’Extract interface I’ + self.name

do {

var i : new Interface;

self.owner.packagedElement.add(i);

i.name = ’I’ + self.name;

var g : new Generalization;

self.generalization.add(g);

g.general = i;

Example Wizard (2)

for (p : Property in

Property.allInstances.

select(p|p.type = self)) {

p.type = i;

}

for (o : Operation in

self.ownedOperation.clone()) {

i.ownedOperation.add(o);

}

}

}

UI Integration

 Inherently, executing wizards is user-driven.

 Have integrated EWL with the MVC
architecture of various modelling tools.

 ArgoUML, Eclipse UML, general GMF editors.

 This is done via Epsilon’s model connectivity
architecture, by producing tool-specific
drivers.

UI Integration

Some Applications

 Implementing refactoring patterns [TOOLS’07].

 Supporting a refinement method for a hybrid
statecharts language [MBED’11].

 “Faking” bidirectional transformation
[Commercial].

 Define consistency rules (in Epsilon) between source
and target languages.

 Define EWL wizards on source and target models.

 Whenever models violate consistency rules, run one or
more EWL wizards to re-establish consistency.

Semantics Preserving?

 Yes indeed!

 Graph transformations are a particularly good
representation for these.

 Can also use run-time verification.

Migrating Models

Metamodels Change Over Time

Original Metamodel

Changed Metamodel

Model Migration Process

A Migration Strategy

• Ports with only incoming Connectors
become InputPorts.

• Ports with only outgoing Connectors become
OutputPorts.

• Other Ports are split into both an InputPort
and an OutputPort.

Original Model

Evolved Model

In Parallel

Approaches

Epsilon Flock

• Transformation language tailored for
migration:
- Model elements that have not been affected by

metamodel evolution are automatically copied
- Model elements that have been affected are

transformed with migrate rules and retyping
rules (or are deleted).

• Extension point for integration with EMF.
• Does not constrain the evolution process.

• ICMT’10, very recent SOSYM paper

Epsilon Flock

delete Port when: not (original.isInput() xor

original.isOutput())

retype Port to InputPort when: original.isInput()

retype Port to OutputPort when: original.isOutput()

migrate Connector {

migrated.‘in‘ = original.from.equivalent();

migrated.out = original.‘to‘.equivalent();

}

operation Original!Port isInput() : Boolean {

return Original!Connector.all.exists(c|c.from == self);

}

operation Original!Port isOutput() : Boolean {

return Original!Connector.all.exists(c|c.‘to‘ == self);

}

Migration Transformations

 These won’t be semantics preserving in
general.

 Constructs can be deleted from a language, or
semantics changed completely.

 A sub-transformation may be semantics
preserving (ie., the ‘copying’ part).

 Migration is a big problem when working with
standards.

 E.g., going from UML 1.x to 2.x

 Versions of GMF.

Merging Models

Model merging

 Model merging is about combining two
models of arbitrary languages into a single
model that:

 does not contain redundant information

 preserves desirable properties of source models.

 Sometimes called model composition, model
unification, model integration.

 There is extensive literature on Database
Schema merging, an area very closely related
to model merging

Why merge models?

 Popular scenario: model versioning.

 Distributed teams.

 To support problem decomposition.

 Sometimes it’s just easier to carry out tasks on
small models and combine the results.

 E.g., merge state machines.

 Product line engineering.

 Merge is used for configuration/instantiation.

 Batch performance analysis.

Phases of Model Merging
 Compare

 Discover the corresponding concepts in the source
models

 Conform
 Resolve conflicts and align models to make them

compatible for integration

 Merge
 Merge common concepts of the source models and port

non-matching concepts

 Restructure
 Restructure the merged model so that it satisfies

desired properties

Epsilon Merging Language

 The Epsilon Merging Language (EML) is a
language that supports most of these phases.

 EML reuses EOL as an infrastructure language.

 Specifically to implement the behaviour of merging
rules.

 Therefore it can be used to merge different types
of models (EMF, MDR, CZT, XML, ...)

Structure of an EML Program

 An EML program consists of merge rules.

 It can also use transform rules (from ETL).

 Some model elements in a source model don’t need
to be merged, they just need to be transformed.

 It also contains a pre and a post block that are
executed before and after the merging
(respectively) to perform tasks that are not
pattern-based

 It assumes that you have already matched.

So how do you match?

 Many approaches can be used for matching
models.

 It’s an important MDE scenario in and of itself.

 Quick overview of the main conceptual
approaches for matching.

Persistent identifiers

Overview

 Every model element has a persistent ID.

 Compare them.

 No effort from the user

 Fast

 Inflexible

 Only applies to homogeneous models

 Models must share a common parent

Signature-based comparison

Overview

 Calculate a signature for each element

 … then compare the signatures

 Relatively little effort

 Define the signature functions

 Fast

 Is often reduced to string comparison

 Mainly useful for tree-like models

 Not resilient to significant structural changes

Similarity-based
comparison

Overview

 Assign weights to features and compare
elements based on the aggregated similarity

 Little effort from the user (set weights)

 Sophisticated algorithms (e.g. similarity
flooding)

 Not particularly flexible (all vs all)

 Cannot exploit metamodel semantics

 Can compare only homogeneous models

 Can get false positives

Epsilon Comparison Language

… a language tailored
for model matching

Examples: Matching
heterogeneous models

Match class with table

rule ClassWithTable

match c : OO!Class

with t : DB!Table {

guard : not c.abstract

compare :

(‘T_’ + c.name).toUpperCase() ==

t.name.toUpperCase()

}

Match guest with room

rule GuestWithRoom

match g : Agent!Guest

with r : Hotel!Room {

compare {

return g.budget >= r.price

and g.reqStars >= r.hotel.stars;

}

}

Match bolt with nut

rule BoltWithNut

match b : Bolts!Bolt

with n : Nuts!Nut {

compare {

var math : new Native(‘utils.MathUtils’);

var difference : Real;

difference = n.perimeter – 2*math.pi*b.diameter;

return difference >= 0 and difference <= 0.1;

}

}

After matching…

 Model elements are partitioned into ones
that match and ones that don’t.

 Matched elements are stored in an internal
model called a match-trace.

 Analogous to the monitors in Klaus’s lectures.

 Trace-links conform to a simple traceability
metamodel.

 How is the match-trace exposed to
humans/other operations?

Back to merging…

 Elements that are matching will be merged.
 The specification of merging is defined in a Merge

Rule

 Elements not matching (but that have been
compared) will be transformed into model
elements compatible with the target
metamodel.
 The specification of transformation is defined

using ETL rules.

 Any other elements indicate an error or
incomplete match rule set.

Example (in EMFatic)

class System {

val Entity[*]#system entity;

}

class Entity {

attr String name;

ref System#entity system;

attr Boolean inDomain;

}

class Vocabulary {

val Term[*] term;

}

class Term {

attr String name;

val Alias[*] alias;

}

class Alias {

attr String name;

}

Compare Vocab/Entity Models

rule MatchSystemWithVocabulary

match s : Source!System

with v : Vocabulary!Vocabulary {

compare { return true; }

}

rule MatchEntityWithTerm

match s : Source!Entity

with t : Vocabulary!Term {

compare {

return s.name = t.name or

t.`alias`.exists(a|a.name = s.name);

}

}

Merge Models – Merge Rules

rule MergeEntityWithTerm

merge s : Source!Entity

with t : Vocabulary!Term

into m : Target!Entity {

m.name = t.name;

m.inDomain = true;

}

rule MergeSystemWithVocabulary

merge s : Source!System

with v : Vocabulary!Vocabulary

into t : Target!System {

t.entity = s.entity.equivalent();

}

Putting the pieces together?

 Also need a transform rule to transform
source/target entities that aren’t matched but
need to be kept.

 How do we take the results of the match
(ECL) and use them in the merge (EML)?

 Global variables?

 Magic?

 Workflow and orchestration.

 General mechanism.

Orchestration and
Coordination

Epsilon ANT tasks

 To enable developers to combine MDE with classical
tasks, a workflow solution for Epsilon is implemented
atop ANT.

 The Epsilon Workflow provides
 ANT tasks for loading & disposing of models

 ANT tasks for executing Epsilon programs

 A common model repository accessible to all the tasks in a
workflow

 Features for importing/exporting variables between different
Epsilon programs (e.g., trace information).

 Existing ANT tasks (e.g., for visualisation, code generation,
profiling) can be used.

For our ECL/EML example

<target name="compare”>

<epsilon.ecl src="Comparison.ecl” exportmatchtrace="eclMatchTrace">

<model ref="Source"/>

<model ref="Vocabulary"/>

</epsilon.ecl>

</target>

<target name="merge">

<epsilon.eml src="Merging.eml” usematchtrace="eclMatchTrace">

<model ref="Source"/>

<model ref="Vocabulary"/>

<model ref="Target"/>

</epsilon.eml>

</target>

Workflows

 These workflows need not be restricted to
MDE/Epsilon tasks.

 Any ANT task can be executed.

 E.g., compile, repository access, debug.

 MDE tasks are typically not executed in a
vacuum.

 Particularly important for working with legacy.

What have we seen?

 Specialised types of model transformation.

 All of these could be implemented using EOL
or ETL.

 We have done so.

 To gather requirements and to convince ourselves
that it was a bad idea.

 You get lots of repetitive code which is hidden
with these specialist languages.

 Less error prone to work with specialist
languages.

What haven’t we seen?

 Validation of models.

 Epsilon Validation Language.

 Also supports inter-model consistency checking,
model repair.

 Testing of model management tasks.

 EUnit.

 Adding new modelling repositories.

 All described in the Epsilon book

 (bestselling, better than Harry Potter, free).

?

Epsilon Workflow Example
<project default=“main”>

<target name=“main” depends=“load,validate,transform”>

</target>

<target name=“load”>

<epsilon.loadModel name=“A”>…</epsilon.loadModel>

<epsilon.loadModel name=“B”>…</epsilon.loadModel>

</target>

<target name=“validate”>

<epsilon.evl src=“AConstraints.evl”>

<model ref=“A”/>

</epsilon.evl>

</target>

<target name=“transform”>

<epsilon.etl src=“A2B.etl”>

<model ref=“A”/>

<model ref=“B”/>

</epsilon.etl>

</target>

</project>

Merge Workflow

1. Execute a match:

 Use Epsilon Comparison Language (or anything
else that produces match-traces).

rule Models

match l : Left!Model with r : Right!Model {

compare : true

}

rule Class match l : Left!Class with r : Right!Class {

compare : l.name = r.name }

Execute Merge Workflow

2. Check the generated match for consistency.

 Epsilon’s validation language is used for this.

context SimpleOO!Class {

constraint BothAbstractOrNot {

guard : self.getMatching().isDefined()

check : self.getMatching().isAbstract =

self.isAbstract

message : 'Inconsistent value in feature

"abstract" ' + 'of class ' + self.name } }

Execute Merge Workflow

3. Merge models using EML.

 See previous code.

 To execute these MDE tasks in sequence, we
use the Epsilon workflow.

EML Program

rule MergeModel

merge l : Left!Model with r : Right!Model

into t : Target!Model {

t.name := l.name + ' and ' + r.name;

t.contents ::= l.contents + r.contents;

}

rule MergeClass

merge l : Left!Class with r : Right!Class

into t : Target!Class {

t.name := l.name;

t.isAbstract := l.isAbstract;

}

EML Program (2)

rule CopyModel

transform s : Source!Model to t : Target!Model {

t.contents ::= s.contents;

}

rule CopyClass

transform s : Source!Class to t : Target!Class {

t.name := s.name;

t.isAbstract := s.isAbstract;

}

Richard Paige
(with Dimitris Kolovos)

@richpaige, @dskolovos, @epsilonnews
Department of Computer Science, University of York, UK

Model Transformations
for Fun & Profit

Structure of Lectures

1. Foundations of Model Driven Engineering
 Motivation; definitions.

 What is it; why should we care; principles?

2. Overview of Model Transformations
 Characteristics and features

 Model-to-model and model-to-text transformations.

3. Advanced Model Transformations
 Update-in-place

 Migration transformations

 Merging transformations

4. Applications.

This is you

Recent Applications

1. Eating your own dog food.

 Practical application.

2. Search-related applications.

 Acquisition of capability.

 Super Awesome Fighter (and variations).

3. No time.

 Sensitivity analysis.

 Transformations of MARTE to Zot.

 Transformations of xUML to Promela.

EuGENia: GMF for mortals

Aim: Implement a graphical
editor for a DSL

Technologies: Eclipse, EMF, GMF

Our Metamodel (in EMF/XMI)

How EMF Works

Generator Model

Metamodel

Code
Generator

How GMF Works

Generator Model

Mapping
Model

Graph
Model

Tooling
Model

Code
Generator

Meta

Model

How GMF Works

Generator Model

Mapping
Model

Graph
Model

Tooling
Model

Code
Generator

Meta

Model

The GMF Tooling Model

How GMF Works

Generator Model

Mapping
Model

Graph
Model

Tooling
Model

Code
Generator

Meta

Model

The GMF Graph Model

How GMF Works

Generator Model

Mapping
Model

Graph
Model

Tooling
Model

Code
Generator

Meta

Model

The GMF Mapping Model

Mapping Model Wizard

How GMF Works

Generator Model

Mapping
Model

Graph
Model

Tooling
Model

Code
Generator

Meta

Model

The Generator Model

How GMF Works

Generator Model

Mapping
Model

Graph
Model

Tooling
Model

Code
Generator

Meta

Model

Powerful

Configurable

Labour intensive

Hard to master

Error prone

Replace it

EuGENia

How EuGENia Works

Graph Model
Tooling Model

Mapping Model

Metamodel
+

Annotations

GMF

Our Metamodel

Our Metamodel (in Emfatic)

Our annotated metamodel

A closer look…

Filesystem

@gmf.diagram
class Filesystem {

val Drive[*] drives;
val Sync[*] syncs;

}

File

@gmf.node(label=“name”)
class File {

attr String name;
}

Shortcut

@gmf.node(label=“name”)
class Shortcut extends File {

attr String name;
@gmf.link(target.decoration="arrow",

style="dash")
ref File target;

}

Folder

@gmf.node(label=“name”)
class Folder extends File {

attr String name;
@gmf.compartment
val File[*] contents;

}

Drive

@gmf.node(label=“name”)
class Drive extends Folder {

attr String name;
@gmf.compartment
val File[*] contents;

}

Sync

@gmf.link(label="lastSync", source="source",
target="target", style="dot", width="2")

class Sync {
ref File source;
ref File target;
attr String lastSync;

}

How EuGENia Works

Graph Model
Tooling Model

Mapping Model

Metamodel
+

Annotations

GMF

Good stuff

 Easy

 High level

 Hides GMF details

 Change resilient

 Can target different editor frameworks in the
future

 Graphiti, Splash

Not so good stuff

 Not 1:1 GMF mapping

 Intentionally (obviously)

 But we are adding features

 Further customization with EOL

 http://epsilonblog.wordpress.com/2009/06/15/euge
nia-polishing-your-gmf-editor/

 Pollutes metamodel

 Trade-off for usability

http://epsilonblog.wordpress.com/2009/06/15/eugenia-polishing-your-gmf-editor/

Implementation Notes

 2 Model-to-Model Transformations

 1235 Lines of Code

 Transformations in EOL

 Good example of a model-to-model
transformation problem

 where declarative (mapping) approaches are
(extremely) impractical.

What’s Next?

 We are working on EuGENia Live!

 Build editors in your browser.

 Don’t have to worry (much) about that pesky
metamodel stuff.

 Just work with concrete syntax.

 Don’t have to deal with the separation between
models/metamodels that exists in Eclipse.

 Export to Ecore to bootstrap the Eclipse
process.

ScreenshotF igur e 1: U M L class diagr am of t he dom ain m odel of EuG EN ia L ive.

(a) The DrawingEditor view. (b) The PaletteEditor view.

F igur e 2: U sing t he v iew s of EuG EN ia L ive t o defi ne a seat ing plan diagr am and i t s language defi ni t ion.

Acquisition of Capability

Capability

 We define capability as:

 'the measure of the abilities of an entity to
achieve its objectives, especially in relation to
its overall mission’ [The Business Dictionary]

 Capability is about being able to solve problems

 It is assessed based on how well the problems
are solved in the real world.

Capability-Based Management

 Some governments (including the UK) are
moving away from

 Management of projects in terms of equipment to

 Management of projects in terms of capabilities.

 In the UK, this is one of the goals of the MoD.

 It means moving from defining problems in
terms of concrete solutions to defining
problems in terms of abstract needs.

 Why is this useful?

Example

 Previously, MOD
procurers might have
defined a problem in
terms of a need for
artillery pieces.

 Defined as a requirement
for a capability of firing
at range we can consider
a set of possible
solutions.

 E.g., bombers, destroyers.

Example

 Each of the solutions (e.g., bomber) proposed
on the previous slide satisfies the same need.

 However, they differ in terms of their own
individual requirements, their cost, and their
original purposes.

 In other words, solutions come with problems.

Modelling can help us understanding problems,
solutions, interdependencies, and contexts!

It’s easier than you think to make
things worse.

Why?

 Let’s say I buy a set of long-range missiles to
solve a military problem.

 Purchasing the missiles has a number of side-
effects:

 I have to store them, maintain them, train people
to use them, purchase support equipment, update
doctrines, …

 And I may scare someone else, who then buys
their own long-range missiles, …

 … and then I need further capability.

Defence Lines of Development

 These ideas are inherent in the MoD’s Defence
Lines of Development (DLoD).

 DLoDs are used to make up a capability:

 Training

 Equipment

 Personnel

 Information

 Doctrine and Concepts

 Organisation

 Infrastructure

 Logistics

Supporting Tradeoffs

 Since the same capability can be produced in
many ways there are trade-offs, e.g.,

 Better training for operators to read a sonar screen vs
a better, more easily read sonar screen.

 Existing levels of personnel and equipment vs fewer
personnel and tanks with clearer information and
rules of engagement.

 Better network infrastructure vs better video
compression.

 Organisations only have a finite budget so what
are the best trade-offs to make?

Introducing CATMOS

 The “Complex Acquisition Tool using Multi-
Objective Search”.

 A generic tool for decision support, inspired by,
but not dependent on DLoDs and TLCM.

 Integrates modelling, model transformation,
search-based software engineering, and
optimisation.

 Implemented using Epsilon (EOL, ETL, Flock).

 ~ 7K of Epsilon code.

Happy Scenario

 John & Jane are looking to
purchase a house in York.

 What kinds of decisions may
they need to take?

 Obviously, which house they want to buy and
move into.

 This is clearly trivial.

Alas!

 There are many factors to consider.

 When viewing a house, both John & Jane
have an opinion; both views must be
considered.

 John is a librarian working in York’s city
center; Jane is a lecturer near Osbaldwick
(3.5km away), and both need to get to work
each day.

 Different houses cost different amounts each
month.

It gets worse!

 If they have a cheaper house, they have more
disposable income.

 And, e.g., can afford a car, more entertainment,..

 Other considerations: what’s the local area
like, things to do, etc.

 How can we help support John & Jane in their
decision?

Model of Decomposed Goals

Model of Acquirable Things

We can search for results

Searching

 The algorithm is multi-objective random
search.

 It calculates optimal options (between
heterogeneous things) and presents them.

 It makes clear the dependencies between
capabilities and components.

 It combines both quantitative and qualitative
optimization.

 But it doesn’t tell you which option to choose!

Tool-chain

Provision/
Dependency

Model

Aggregation
Model

Constraint
Tree Input

Model

Constraint
Tree Output

Model

Full Goal
Model

High-Level
Goal Model

Status

 Currently the modelling approach and toolset
finds solutions, gives quantitative guidance.

 Can take into account combinations of
quantitative fitness functions and qualitative ones.

 GUI/interface needs more work.

 Applied to a number of examples: real estate,
search and rescue, crisis management, next-
release problem, ...

 Now taking into account temporal properties.

Super Awesome Fighter

Super Awesome Fighter

 How do you explain modelling to high school
students?

 Who may want to come to university to study the
awesomeness that is Software Engineering?

 What do they understand?

 Language: they may have worked with HTML,
PHP, Java, C, …

 Stupid video games.

Super Awesome Fighter

 Over several brainstorming sessions, we
developed a number of DSLs for describing
the behaviour of players in a fighting game.

 These DSLs (and their evolution) are interesting
by themselves, but not the real focus here.

 We also built a game engine, which would
take player descriptions and (using Epsilon),
interpret them and fight.

Fighter Description Language

One of the most widely used modelling frameworks is the Eclipse Modeling

Framework (EMF) [17], part of the Eclipse IDE2. EMF provides mechanisms for

creat ing, edit ing and validat ing models and metamodels, as well as for generat ing

code from models. EMF generates a Java implementat ion of metamodels where

each of the metamodel’s classes (called meta-classes) corresponds to a single

Java class. This means that these classes can be instant iated to create models

conforming to the metamodel. EMF can also create (t ree-based or graphical)

editors for models conforming to metamodels [17].

2.3 T he Fight er D escr ipt ion L anguage

The fight ing game, SAF, int roduced in sect ion 1 allows the behaviour of fighter

characters to be defined in a bespoke domain-specific language, the fighter de-

scription language (FDL). Fighters in SAF areMDE models, which aredescribed

by the FDL. Figure 2 shows a simplified version of the metamodel for a SAF

fighter.

name : String

Bot

Personality

Behaviour

punchReach : Int

punchPower : Int

kickReach : Int
kickPower : Int

Characteristic

Rule

type : MoveActionType

MoveAction

type : FightActionType

FightAction

type : ConditionType

Condition

walk_towards
walk_away

run_towards

run_away

jump
crouch

stand

<<enum>>

MoveActionType

block_low

block_high

punch_low
punch_high

kick_low

kick_high

<<enum>>

FightActionType

always
near

far

much_stronger

stronger
even

weaker

much_weaker

<<enum>>

ConditionType

* *

0..1 0..1 0..1

1 1

Fig. 2: The simplified metamodel for the character behaviour language used in

SAF.

A fighter (Bot) in SAF has two features- a Per sonal i t y and a Behavi our .

A fighter’s Per sonal i t y is defined by a set of Char act er i st i c s – defining

the power and reach of the fighter (values range between 0 and 9). These charac-

terist ics represent t rade-offs: a more powerful st rength characterist ic limits the

speed with which the fighter can move. If one of the characterist ics is not speci-

fied by the user, its value defaults to 5. The Behavi our of a fighter is made up

2 Eclipse website: ht t p: / / www. ecl i pse. or g

Example Character in FDL

Some details

 We implemented FDL using Xtext.

 Great tool for rapid development of DSLs.

 Fighter characteristics (power, reach, speed –
values between 0..9) represent tradeoffs.

 A stronger character moves more slowly.

 Behaviour rules specify how fighters act in
certain conditions.

 E.g., choose between block high or block low

 Could introduce high school students to
things like sequencing and nondet.

This is cool!

 Kids can write their own players, without
knowing anything about DSLs, game
engines, etc.

 But we can slip these ideas in as we go.

 We can construct fun animations.

 We can introduce some MDE concepts, e.g.,
using EOL to do the simulations, health
calculations, validation, etc.

But wait, there’s more…

 We got fed up with losing.

 More accurately, I got fed up with losing.

 If a high school kid specifies a fighter using
FDL, can we determine an “ideal” opponent
for them?

 i.e., one that regularly defeats them?

 More precisely, given a specification of a
player, can we determine good opponents,
e.g., ones who win >= 80% of the time.

Search

 Search-based software engineering is about
using optimization techniques to find
solutions.

 We implemented a search algorithm for
Super Awesome Fighter.

 The algorithm is based on grammatical evolution
(which we implemented in EOL)

 We combined this with a metaheuristic search
algorithm to identify the ‘good’ fighters.

Grammatical Evolution

 Calculate sentences (‘programs’) from
descriptions specified in BNF (or equivalent).

 The main idea in GE is the genotype to
phenotype mapping.

 A genotype (e.g., an integer) is mapped to a
phenotype, which is a valid sentence in the BNF.

Integer string

212142 45 56

Genotype Model

2

12

142

45

56

Xtext FDL Definition

grammar saf.fdl

with org.eclipse.xtext.common.Terminals

generate fdl "saf.fdl"

Bot:

'Sample' '{' '\n'

personality=Personality
behaviour=Behaviour

'}';

...

EOL Genotype to
Phenotype Model

Transformation

1. Integer string is translated into a

 Genotype model

2a. Genotype model passed

 to transformation

2b. Xtext definition of the FDL grammar

 parsed into a model and passed to

 transformation

Sampl e {
 k i ckPower =6
 punchReach=4
 near [st and punch_l ow]
 st r onger [r un_t owar ds bl ock_hi gh]
 al ways[j ump ki ck_hi gh]
}

3. Script outputs the fighter as a string

next

next

next

next

next

Fig. 4: The process followed in order to t ransform the genotype into the pheno-

type.

and contains four choices. When parsed into a model conforming to the Xtext

metamodel, it takes the shape of figure 5.

1 C h ar act er i st i c :

2 ’ punchReach ’ ’= ’ v al u e=NUMBER ’ \ n ’ | ’ punchPower ’ ’= ’ v al ue

=NUMBER ’ \ n ’ |

3 ’ k i ckReach ’ ’= ’ v al ue=NUMBER ’ \ n ’ | ’ k i ckPower ’ ’= ’ v al ue=

NUMBER ’ \ n ’ ;

List ing 1.2: The Xtext grammar rule for defining characterist ics of a fighter.

When this rule is reached during the t ransformat ion, the current codon’s

value ident ifies which alternat ive to execute by taking the codon’s value modulo

What remains?

 Connect our Epsilon GE implementation with
a metaheuristic search algorithm.

 Define a fitness metric to assess whether a
‘found’ fighter is difficult to beat.

 Based this on the difference between number of
fights won by a candidate against a seed set, and a
target number of winning fights.

 Numerous settings for running experiments, see
our paper at SSBSE’11 for details.

Conclusions?

 Unbeatable fighters can be derived; a simple
GA finds such examples ~70% of the time.

 This also suggests that a human could build an
unbeatable fighter in FDL quite easily.

 Suggests we need to evolve FDL.

 Very easy to develop ‘strong’ fighters,
winning 80% of the time.

 The search exposed shortcomings in FDL,
e.g., that it needed a ‘completeness’ clause.

 Also helped debugging fighters.

What’s next?

 Evolution of FDL, including working with
different dialects.

 Modelling fighter behaviour via state machines.

 Other games, including “choose-your-own
adventure”.

 “Barely Adequate Fighter”.

The Thrill of Victory!

The Agony of Defeat!

Uncertainty & Sensitivity
Analysis

“I took a test in
Existentialism. I left all the
answers blank and got 100.”

Uncertainty

 All software engineering suffers from degrees
of uncertainty.

 Any form of modelling is subject to different
levels of uncertainty.

 Errors of measurement or interpretation.

 Incomplete information

 Poor or partial understanding of domain.

 When applying operations to models,
uncertainty can lead to unexpected
behaviours.

Sensitivity Analysis

 A means to explore how changes to a model
affects the output of a model management
operation.

 E.g., a transformation.

 Sensitivity analysis can provide modellers
with greater confidence in the adequacy of
their model.

 Highlighting sensitive parts of a model can
provide insight into execution of an
operation.

Types of MDE Uncertainty

 Data uncertainty.

 E.g., types of values/attributes of classes,
transitions, multiplicities.

 Structural uncertainty.

 E.g., types of relationships between model
elements; usage of patterns, or instances of
patterns.

 Behavioural uncertainty.

 E.g., the operating context in which an operation
has been developed.

MDE Sensitivity Analysis

 Use an uncertainty model to capture data uncertainty in an input model.
 Pass to an input space sampler – a model generator that selects variants of a

model according to a sampling method.
 Execute against operation and produce a report based on a domain-specific

response measure (e.g., effect on small part of a model).

Clever Parts

 The model generator is the tricky part.

 Based on a lightweight and simple way of
representing arbitrary models (of arbitrary
metamodels) as integer strings.

Metamodel Finitisation

Example

 We have applied sensitivity analysis
framework to CATMOS.

 Tool was instantiated to calculate optimal
acquisition decisions for an airport crisis
management system.

 The analysis identified capability that had no
effect on a system goal – response time to
reach a fire.

 Such components can be removed: they have a
cost, but don’t contribute.

Example (2)

 CATMOS calculates a Pareto front.

 Solutions that are optimal in some attribute.

 CATMOS found a solution on the first non-
dominating rank that appeared to be (on
average) better than solutions on the Pareto
front.

 However, this solution is much more sensitive to
uncertainty than ones on the Pareto front.

 So it might be less desirable to engineers.

What’s Next?

 Working on structural uncertainty.

 Trickier, because greater dependency between
changes may exist.

 E.g., change an attribute type may require
changes to metamodel itself.

 Also are adding support for probability
distributions to uncertainty.

Enabling Verification

The Epsilon Team
University of York

Enabling verification

 We have used MDE in several projects to
enable verification of dependable systems.

 Connect domain-expert friendly languages

 To powerful analysis languages and tools.

 “Formal methods under-the-hood”.

 Two (brief) examples:

 Railway interlocking.

 Embedded systems verification.

The INESS Project

 INtegrated European Signalling System
(INESS)
 Integration of different signalling systems within

Europe

 One of the objectives is to define models of this
integrated signalling system

 Defined in Executable UML (Artisan xUML tool)

 Models can be analysed via simulation (Cassandra
tool)

Formal Verification Strategy

 Generate PROMELA from xUML
 xUML also used to model (safety) properties of interest.

 We implemented a multi-step transformation of
xUML to PROMELA, whereafter verification can
take place

 We also automatically generate counter-
examples for properties with a false result during
verification using model transformations

Sample xUML of Horrors

Automatic Generation of Counter-
Examples

 A false verification result produces text at the abstraction
level of the target verification tool

 In order to represent the result in an abstraction
compatible with the models, we automatically generate
UML sequence diagrams

 Four different transformation steps are defined which
include the generation of:
 A counter-example model

 A trace-sequence model

 A graphical trace-sequence model

 The UML files representing the sequence diagram

MADES…

Model-based methods and tools for Avionics and
surveillance embeddeD systEmS

STREP project of the FP7…

Verification in
MADES

Verification
in the context of MADES…

Describe operational behaviours, by
modelling explicitly the notion of time
and expressing time constraints

Is the system able to complete
Task X within t time units?

Does Event E always precede
Event F?

If Event E occurs, will Event F
occur within t time units?

ZOT

Hmmm…

Tools not integrated with those that
the developers already use.

No prior experience with Lisp.

No prior experience with formal methods.

So our goal is to enable the
use of formal verification …

… by hiding complexity…

316

… and by integrating formal
verification tools with
standard modelling tools.

Toolchain

MADES modeling…

XMI

Supported diagrams…

Class diagrams Object diagrams

Sequence diagrams State diagrams

Interaction overview
diagrams

Time constraints…

@now-@braking.enter = 5

Textual DSL

Time properties…

XMI TRIO

Transformation component…

xmi2java2lisp

xmi2java2lisp

xmi2java2lisp

Verification component…

Lisp
X

V

Traceability component…

EGL Traceability

Hyperlinks

Traceability editor…

