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  errors are expensive … 
  annual cost of software errors to US economy is $ ~60B [NIST’02] 

software is everywhere 



approaches to finding errors 

model checking 
automatic, exhaustive  
scalability issues 

 
static analysis 

automatic, scalable, exhaustive 
reported errors may be spurious 

testing  
reported errors are real  
may miss errors 
well accepted technique; state of practice 



our approach 

combine model checking and symbolic 
execution for test case generation 



testing vs model checking 

OK 
testing / simulation 

error  

OK 

test oracle 

model checking 

error trace 
Line 5: … 
Line 12: … 
… 
Line 41:… 
Line 47:… 

void add(Object o) { 
 buffer[head] = o; 
 head = (head+1)%size; 
} 
 
Object take() { 
 … 
 tail=(tail+1)%size; 
 return buffer[tail]; 
} 

program / model 

always(ϕ orψ) 

property 
  

void add(Object o) { 
 buffer[head] = o; 
 head = (head+1)%size; 
} 
 
Object take() { 
 … 
 tail=(tail+1)%size; 
 return buffer[tail]; 
} 

program / model 



java pathfinder (jpf) 

extensible virtual machine framework for java bytecode verification 
workbench to implement all kinds of verification tools 
 
typical use cases:  

software model checking (detection of deadlocks, races, assert errors) 
test case generation (symbolic execution) ... and many more  



java pathfinder (jpf) 

scalability 
on-the-fly partial order reduction 
configurable search strategies 
user definable heuristics, choice generators 

awards  
NASA 2003, IBM 2007, FLC 2009 

open sourced 
http://babelfish.arc.nasa.gov/trac/jpf 

 

largest application 
Fujitsu (one million lines of code) 
 



symbolic pathfinder (spf) 

combines symbolic execution, model checking  and constraint solving 
applies to executable models and code 
handles dynamic data structures, loops, recursion, multi-threading; arrays and strings 
java pathfinder extension project [TACAS’03, ISSTA’08, ASE’10] 

Error Report 

Systematic 
Analysis 

Sym Exe Tree 

Test 
Sequences 

Constraint 
Solving Java bytecode 

symbolic pathfinder (spf) 



users 

 
academia  

 uiuc.edu, unl.edu, utexas.edu, byu.edu, umn.edu, Stellenbosch Za,  
 Waterloo Ca, Charles University Prague Cz,  … 

industry (Fujitsu) 
NASA (Ames, Langley) 

Error Report 

Systematic 
Analysis 

Sym Exe Tree 

Test 
Sequences 

Constraint 
Solving Java bytecode 

symbolic pathfinder (spf) 



symbolic execution 

King [Comm. ACM 1976], Clarke [IEEE TSE 1976] 
 
analysis of programs with unspecified inputs 

–  execute a program on symbolic inputs 
symbolic states represent sets of concrete states 
for each path, build path condition 

–  condition on inputs – for the execution to follow that path 
–  check path condition satisfiability – explore only feasible paths 

symbolic state 
–  symbolic values/expressions for variables 
–  path condition 
–  program counter 



received renewed interest in recent years … due to 
–  algorithmic advances  
–  increased availability of computational power and decision procedures 

applications 
–  test-case generation, error detection, … 

tools, many open-source 
–  UIUC: CUTE, jCUTE, Stanford: EXE, KLEE, UC Berkeley: CREST, BitBlaze   
–  Microsoft’s Pex, SAGE, YOGI, PREfix 
–  NASA’s Symbolic (Java) Pathfinder 
–  IBM’s Apollo, Parasoft’s testing tools etc. 

symbolic execution 



x = 1, y = 0	



1 > 0 ? true	



x = 1 + 0 = 1	



y = 1 – 0 = 1	



x = 1 – 1 = 0	



0 > 1 ? false	



int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



Concrete Execution Path Code that swaps 2 integers 

example: standard execution 



[PC:true]x = X,y = Y	



[PC:true] X > Y ?	



[PC:X>Y]y = X+Y–Y = X	



[PC:X>Y]x = X+Y–X = Y	



[PC:X>Y]Y>X ?	



int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



Code that swaps 2 integers Symbolic Execution Tree 

[PC:X≤Y]END	

 [PC:X>Y]x= X+Y	


false	

 true	



[PC:X>Y∧Y≤X]END	

 [PC:X>Y∧Y>X]END	


false	

 true	



path condition	



False!	



Solve PCs: obtain test inputs 

example: symbolic execution 



testing coverage 

!   statement and branch coverage 
!   state and transition coverage 
!   path coverage (default) 
!   MC/DC (modified condition/decision coverage) 
!   predicate coverage 

 



coverage 

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



statement coverage 



java pathfinder (jpf) used for systematic exploration 
–  symbolic execution tree 
–  multi-threading 
–  property checking 
–  backtracking – when PC un-satisfiable 
–  different search strategies (depth-first, breadth-first) 

 
lazy initialization for input data structures [TACAS’03] 

–  non-determinism handles aliasing in input data structures  
–  different heap configurations explored explicitely 

 
takes advantage of jpf’s optimizations! 

symbolic pathfinder (spf) 



 
 

no state matching performed  
–  some abstract state matching 

symbolic search space may be infinite due to loops, recursion 
–  we put a limit on the search depth  

symbolic pathfinder (spf) 



implementation 

non-standard interpreter of byte-codes  
–  replaces concrete execution semantics of byte-codes with symbolic 

execution 

–  enables jpf-core to perform systematic symbolic analysis 

attributes 
–  symbolic information stored in attributes associated with the 

program data 

–  propagated dynamically during symbolic execution 



implementation 

choice generators 
–  handle non-deterministic choices in branching conditions 

listeners 
–  collect and print results: path conditions, test vectors or test 

sequences 

–  influence the search 

native peers 
–  model native libraries 

–  e.g. capture Math library calls and send them to the constraint 
solver  

mixed concrete-symbolic solving 



example: IADD 

public class IADD extends 
Instruction { … 

 public Instruction execute(… 
ThreadInfo th){ 

 int v1 = th.pop(); 
 int v2 = th.pop(); 
 th.push(v1+v2,…); 
 return getNext(th); 

 } 
} 

public class IADD extends  
   ….bytecode.IADD { … 
 public Instruction execute(…  
   ThreadInfo th){ 
   Expression sym_v1 = ….getOperandAttr(0); 
   Expression sym_v2 = ….getOperandAttr(1); 
   if (sym_v1 == null && sym_v2 == null) 
     // both values are concrete 
     return super.execute(… th); 
   else { 

   int v1 = th.pop(); 
   int v2 = th.pop(); 
   th.push(0,…); // don’t care 
   … 
   ….setOperandAttr(Expression._plus( 
  sym_v1,sym_v2)); 
   return getNext(th); 

   } 
 } 
} 

Concrete execution of IADD byte-code: Symbolic execution of IADD byte-code: 



example: IFGE 

public class IFGE extends 
Instruction { … 

 public Instruction execute(… 
ThreadInfo th){ 

 cond = (th.pop() >=0); 
 if (cond) 

     next = getTarget(); 
 else 

     next = getNext(th); 
 return next; 

 } 
} 

public class IFGE extends  
   ….bytecode.IFGE { … 
 public Instruction execute(…  
   ThreadInfo th){ 
   Expression sym_v = ….getOperandAttr(); 
   if (sym_v == null) 
     // the condition is concrete 
     return super.execute(… th); 
   else { 

  PCChoiceGen cg = new PCChoiceGen(2);… 
  cond = cg.getNextChoice()==0?false:true; 
  if (cond) { 

        pc._add_GE(sym_v,0); 
        next = getTarget(); 
     } 
     else { 
        pc._add_LT(sym_v,0); 
        next = getNext(th); 
     } 
     if (!pc.satisfiable()) … // JPF backtrack  
     else cg.setPC(pc); 
     return next; 
   } } } 

Concrete execution of IFGE byte-code: Symbolic execution of IFGE byte-code: 



decision procedures 

used to check path conditions 
–  if path condition is un-satisfiable, backtrack 
–  solutions of satisfiable constraints used as test inputs 

SMT solvers 
–  Satisfiability Modulo Theories 
–  given a formula in first-order logic, with associated background 

theories, is the formula satisfiable? 

see also:  
–  SMTLIB -- repository for SMT formulas (common format) and tools 
–  SMTCOMP – annual competition of SMT solvers  

 
  



decision procedures 

! spf uses 
–  SMT solvers: Yices, CVC3 
–  solvers for complex constraints: Choco, Coral 
–  string solvers: Hampi, IASolver … 

!   generic interface  
–  easy to extend with new constraint solvers and decision procedures 

!   new interface [Visser et al FSE’12] 
 
  



mathematical functions 

model-level interpretation 

Math.sin $x + 1 sin($x + 1) 

symbolic expression  
w/ un-interpreted function handled 

directly by solver (Choco)  



challenge 
 
lazy initialization  [TACAS’03, SPIN’05] 
non-determinism handles aliasing  

–  jpf explores different heap configurations explicitly 

 
implementation 

–  GETFIELD, GETSTATIC bytecode instructions modified 
–  listener prints input heap constraints and method effects 

(outputs) 

input data structures 



example 

class Node { 
int elem; 
Node next; 
 
Node swapNode() { 
    if (next != null) 
        if (elem > next.elem) { 
            Node t = next; 
            next = t.next; 
            t.next = this; 
            return t; 
        } 
    return this; 
} 

} 

? null 

E0 E1 

E0 

E0 E1 null 

E0 E1 ? 

E0 E1 

E0 E1 

Input list          +  Constraint Output list 

E0 > E1 

true 

E0 <= E1 

none 

E0 > E1 

E0 > E1 

E0 > E1 

E1 E0 ? 

E1 E0 

E1 E0 

E1 E0 null 

E0 E1 

E0 

? null 

NullPointerException  



lazy initialization 

E0 
next 

E1 
next 

t 
null 

t 
E0 

next 
E1 

next 
? 

next 
E0 

next 
E1 

t next E0 next E1 

next 

t 

E0 
next 

E1 
next 

t 

consider executing 
next = t.next; 

E0 E1 
next 

t 
null 

next 

t 
E0 E1 

next 
? 

next 
next 



lazy initialization 

if (f is uninitialized) { 
if(f is reference field of type T) { 

 non-deterministically initialize f to 
•  null 
•  a new object of type T (with un-initialized fields) 
•  a previosly initialized object of type T 

}  
if (f is numeric or string field) { 

 initialize f to a new symbolic value 
} 

} 



lazy initialization and garbage collection 

class TreeNode { 
int elem; 

     TreeNode left; 
     TreeNode right; 

 
void GCIssue() { 

              if(left !=null) 
    left = null; 
  if(right!=null) 
    right=null; 
} 

} 

? 
left right 

? 
left right 

? 
left right 

? 
left right 

? 
left right 

null 

garbage collection 

Solution:  
No garbage collection  
for objects created with 
lazy initialization! 



test generation for input data structures 

generated constraints with lazy initialization 
PCconstraint # = 1 
input[320].elem > input[320].next[247].elem 
heap PCconstraint # = 6 
input[320].next[247].next[248] != input[320] && 
input[320].next[247].next[248] != input[320].next[247] && 
input[320].next[247].next[248] != CONST_-1 && 
input[320].next[247] != input[320] && 
input[320].next[247] != CONST_-1 && 
input[320] != CONST_-1 
 

use Korat to solve them/generate test inputs 
–  a tool for constraint-based generation of structurally complex test 

inputs for Java programs. 
http://korat.sourceforge.net/ 

test sequence generation [ISSTA’04,ISSTA’06] 



Java component 
(Binary Search Tree, 

UI) 

add(e) 

remove(e) 

find(e) 

Interface 

Generated test sequence: 
BinTree t = new BinTree();  
 t.add(1);  
 t.add(2);  
 t.remove(1); 

SymbolicSequenceListener generates JUnit tests: 
–   method sequences (up to user-specified depth) 
–   method parameters 

JUnit tests can be run directly by the developers 
measure coverage 
support for abstract state matching 
extract specifications 

test sequence generation 



applications 

NASA control software [ISSTA’08] 
–  manual testing: time consuming (~1 week) 
–  guided random testing could not obtain full coverage 
–  spf generated ~200 tests to obtain full coverage in <1min 
–  found major bug in new version 

Polyglot [ISSTA’11, NFM’12] 
–  analysis and test case generation for UML, Stateflow and Rhapsody models 
–  pluggable semantics for different statechart formalisms 
–  analyzed MER Arbiter, Ares-Orion communication 

Tactical Separation Assisted Flight Environment (T-SAFE) [NFM’11, ICST’12] 
–  integration with CORAL for solving complex mathematical constraints 

test case generation for Android apps … 

Orion orbits the moon  
(Image Credit: Lockheed Martin) 



symbolic pathfinder 

available from jpf distribution 
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc 



how to run spf 

go to: http://babelfish.arc.nasa.gov/trac/jpf/ 
download: jpf-core and jpf-symbc 
set up the site properties 
examples in jpf-symbc 

 src/examples/summerschool 
 
how to run them (in eclipse): 

 select a .jpf configuration file 
 run with run-JPF-symbc 
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symbolic execution 

King [Comm. ACM 1976], Clarke [IEEE TSE 1976] 
 
analysis of programs with unspecified inputs 

–  execute a program on symbolic inputs 
symbolic states represent sets of concrete states 
for each path, build path condition 

–  condition on inputs – for the execution to follow that path 
–  check path condition satisfiability – explore only feasible paths 

symbolic state 
–  symbolic values/expressions for variables 
–  path condition 
–  program counter 



[PC:true]x = X,y = Y	



[PC:true] X > Y ?	



[PC:X>Y]y = X+Y–Y = X	



[PC:X>Y]x = X+Y–X = Y	



[PC:X>Y]Y>X ?	



int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



Code that swaps 2 integers Symbolic Execution Tree 

[PC:X≤Y]END	

 [PC:X>Y]x= X+Y	


false	

 true	



[PC:X>Y∧Y≤X]END	

 [PC:X>Y∧Y>X]END	


false	

 true	



path condition	



False!	



Solve PCs: obtain test inputs 

example: symbolic execution 



symbolic pathfinder (spf) 

combines symbolic execution, model checking  and constraint solving 
  
applies to executable models and code 
 
handles dynamic data structures, loops, recursion, multi-threading; arrays and strings 
 
java pathfinder extension project [TACAS’03, ISSTA’08, ASE’10] 

Error Report 

Systematic 
Analysis 

Sym Exe Tree 

Test 
Sequences 

Constraint 
Solving Java bytecode 

symbolic pathfinder (spf) 



dynamic techniques 

classic symbolic execution is a static technique 
 
dynamic techniques 

–  collect symbolic constraints during concrete executions 
–  DART = Directed Automated Random Testing 
–  Concolic (Concrete Symbolic) testing 

P. Godefroid  



dynamic test generation 
–  run the program starting with some random inputs 
–  gather symbolic constraints on inputs at conditional statements 
–  use a constraint solver to generate new test inputs 
–  repeat the process until a specific program path or statement is 

reached (classic dynamic test generation [Korel90]) 
–  or repeat the process to attempt to cover ALL feasible program paths 

(DART [Godefroid et al PLDI’05]) 

detect crashes, assert violations, runtime errors etc. 

thanks P. Godefroid  

dynamic techniques 



DART: Directed Automated Random Testing 

1.   Automated extraction of program interface from source 
code 

2.  Generation of test driver for random testing through the 
interface 

3.  Dynamic test generation to direct executions along 
alternative program paths 
–  Together: (1)+(2)+(3) = DART     
–  DART can detect program crashes and assertion violations. 
–  Any program that compiles can be run and tested this way: 

No need to write any test driver or harness code! 
–  (Pre- and post-conditions can be added to generated test-driver) 



directed search 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 0, y = 0 create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	





directed search 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 0, y = 0 

create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



x ≤ y 

Solve: !(x≤y) 
 
Solution: x=1, y=0 



Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 1, y = 0 create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



directed search 



Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 1, y = 0 

create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



x > y 

directed search 



Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 1, y = 0 

create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



x > y 

x = x+y 

directed search 



Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 1, y = 1 

create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



x > y 

y = x 
x = x+y 

directed search 



Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 0, y = 1 

create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



x > y 

y = x 

x = y 

directed search 



Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 0, y = 1 

create symbolic 
variables x, y  

int x, y;	



if (x > y) {	



  x = x + y;	



  y = x – y;	



  x = x – y;	



  if (x > y)	



    assert false;	



}	



x > y 

y = x 

x = y 

y ≤ x 

Solve: x> y AND !(y≤x) 
 
Impossible: DONE! 

directed search 



another example 

void test(int x, int y) {	



  int z = x*x*x;	



  if (y==z)	



    assert false;	



}	



using concrete values 



the power of DART 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

x = 3, y = 7 create symbolic 
variables x, y  

void test(int x, int y) {	



  int z = x*x*x;	



  if (y==z)	



    assert false;	



}	





the power of DART 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

z = 27 

void test(int x, int y) {	



  int z = x*x*x;	



  if (y==z)	



    assert false;	



}	



x = 3, y = 7 

z = x*x*x 

create symbolic 
variables x, y  



the power of DART 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

z = 27 

void test(int x, int y) {	



  int z = x*x*x;	



  if (y==z)	



    assert false;	



}	



x = 3, y = 7 

z = x*x*x 

create symbolic 
variables x, y  

y != x*x*x 

Solve: !(y!=x*x*x) 
 
Non-linear -- not 
possible to solve! 



the power of DART 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

z = 27 

void test(int x, int y) {	



  int z = x*x*x;	



  if (y==z)	



    assert false;	



}	



x = 3, y = 7 

z = x*x*x 

create symbolic 
variables x, y  

y != x*x*x 

Solve: !(y!=x*x*x) 
 
DART solution: use 
concrete value of z 



the power of DART 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

z = 27 

void test(int x, int y) {	



  int z = x*x*x;	



  if (y==z)	



    assert false;	



}	



x = 3, y = 7 

z = x*x*x 

create symbolic 
variables x, y  

y != x*x*x 

Solve: !(y!=27) 
 
DART solution: use 
concrete value of z 



the power of DART 

Concrete 
Execution 

Symbolic 
Execution 

 Path 
Constraint 

z = 27 

void test(int x, int y) {	



  int z = x*x*x;	



  if (y==z)	



    assert false;	



}	



x = 3, y = 27 

z = x*x*x 

create symbolic 
variables x, y  

Y == x*x*x 

Error discovered! 



very popular 
easy to implement 
implemented and extended in many interesting ways  
many tools 

–  PEX, SAGE, CUTE, jCUTE, CREST, SPLAT, etc 

many applications 
–  bug finding, security, web and database applications, etc. 

 
EXE (Stanford Univ. [Cadar et al TISSEC 2008]) 

–  related dynamic approach to symbolic execution 

DART: Directed Automated Random Testing 



white-box fuzzing [NDSS’08] 

white-box Fuzzing = “DART meets Fuzz” 
–  Black-box Fuzzing = randomly “fuzz”(modify) a well-formed input; simple but 

effective 
apply DART to large applications (not unit) 

–  Binary level 
–  Thousands of inputs, millions of instructions 

start with a well-formed input (not random) 
combine with a generational search (not DFS) 

–  negate 1-by-1 each constraint in a path constraint 
–  generate many children for each parent run 
–  challenge all the layers of the application sooner 
–  leverage expensive symbolic execution 

search spaces are huge, the search is partial…                                                   
yet effective at finding bugs ! 

Gen 1 
parent 



SAGE 

SAGE found many new security bugs in Windows applications 

 Cost of each Microsoft Security Bulletin: $Millions 

 Cost due to worms (Slammer, CodeRed, Blaster, etc.):$Billions 

apps: image processors, media players, file decoders,… 

many bugs triaged as “security critical, severity 1, priority 1” (would 
trigger Microsoft security bulletin if known outside MS) 

bugs missed by black-box fuzzers or static analysis 

used daily in various Microsoft groups 

Thanks P. Godefroid 



CUTE, jCUTE, CREST, PEX 

CUTE (for C) and jCUTE (for Java)  
–  extends DART to handle multi-threading programs with dynamic data 

structures 
–  pointer constraints and dynamic partial order reduction  

CREST is a new extensible open source tool that performs 
dynamic testing for C 
PEX is Microsoft’s dynamic testing tool for .NET code 
 
many, many other tools … 



PEX 

!   Pex is a Visual Studio 2010 Power Tool 
–  http://msdn.microsoft.com/en-us/vstudio/bb980963.aspx 
–  Power Tools are a set of enhancements, tools and command-line 

utilities 

!   used by several groups within Microsoft  
!   externally, available under academic and commercial licenses  
!   Pex in the browser 

–  http://pexforfun.com 

Thanks N. Tillmann 



EXE and KLEE 

symbolic execution tools for C 
–  perform mixed symbolic/concrete execution 
–  model memory with bit-level accuracy 
–  systems code often treats memory as un-typed bytes      

and observes a single memory location in multiple ways 

employ various constraint-solver optimizations, in 
addition to those implemented in the STP solver: 

–  irrelevant constraint elimination, cex caching, etc. 

use search heuristics to get high-coverage 
can interact with the external environment (KLEE) 



UNIX file systems ext2, ext3, JFS 

UNIX utilities Coreutils, Busybox, Minix 

MINIX device drivers pci, lance, sb16 

Library code PCRE, uClibc, Pintos 

Packet filters FreeBSD BPF, Linux BPF 

Networking servers udhcpd, Bonjour, Avahi, WsMp3 

Operating Systems HiStar kernel 

OpenCV Computer vision code 

EXE and KLEE 

targeted at low-level systems code.  
found bugs (including security vulnerabilities) 



KLEE 

open-sourced in June 2009 
extended by several research groups 

–  wireless sensor networks 

–  schedule memoization in multithreaded code 

–  automated debugging 

–  online gaming 

–  exploit generation, etc. 

http://klee.llvm.org 

Thanks C. Cadar 
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challenges 
 

 path explosion 
 

 complex constraints  
 

 handling native calls 
 

 
 
 



path explosion 

 

 
symbolic execution of a program may result in a very large, 
possibly infinite number of paths 



    void test(int n) { 
            int x = 0; 
            while(x < n) 
              x = x + 1; 
    } 

example code 

infinite symbolic execution tree 

n:S 
PC:true 

n:S,x:0 
PC:true 

n:S,x:1 
PC:0<S 

n:S,x:0 
PC:0<S 

n:S,x:0 
PC:0>=S 

n:S,x:1 
PC:0<S ∧ 1>=S 

n:S,x:1 
PC:0<S ∧ 1<S 

   ... 

loops and recursion 



solutions 

dealing with loops and recursion 
–  put bound on search depth or on number of PCs 
–  stop search when desired coverage achieved 
–  loop abstraction [Saxena et al ISSTA’09] [Godefroid ISSTA’11] 

[Strejček and Trtík ISSTA’12] 

 
addressing path explosion 

–  parallel symbolic execution 
–  abstract state matching 
–  compositional DART = SMART 



loop summaries 

void test(int n) { 
 int i=0; 
 while(n>0) { 
   if(i==200) assert false; 
   i=i+1; 
   n=n-1; 
 } 
 if (i==100) assert false; 
} 

symbolic execution 
•  generates 201 tests to hit 1st 

assertion 
•  possibly runs forever, without 

hitting 2nd assertion 

use loop invariant 
•  i+n=Symn 

 

loop summary (last iteration) 
•  Preloop=(Symn>0) 
•  Postloop= (n=1 & i+n=Symn) 

simplified from [Godefroid&Luchaup ISSTA’11] 



loop summaries 

void test(int n) { 
 int i=0; 
 while(n>0) { 
   if(i==200) assert false; 
   i=i+1; 
   n=n-1; 
 } 
 if (i==100) assert false; 
} 

on last loop iteration 
•  update PC with Preloop=(Symn>0) 
•  update symbolic state with 

Postloop= (n=1 & i+n=Symn), i.e. 
i=Sym_n-1 

 
results in PC 
•  Symn>0 & Symn-1!=200 & Symn!

=100 
 
running DART on n=0 
•  will generate 4 tests to hit both 

assertions 



symbolic execution very amenable to parallelization 
no sharing between sub-trees 

 

parallel symbolic execution  



balancing partitions 

nicely balanced – linear speedup poorly balanced – no speedup 

simple static partitioning [ISSTA’10] 

dynamic partitioning [Andrew King’s Masters Thesis at KSU, Cloud9 at EPFL, 
Fujitsu] 



simple static partitioning 

static partitioning of tree with light dynamic load balancing 
–  flexible, little communication overhead 

constraint-based partitioning 
–  constraints used as initial pre-conditions 
–  constraints are disjoint and complete 

approach 
–  shallow symbolic execution => produces large number of constraints 
–  constraints selection – according to frequency of variables 
–  combinatorial partition creation 

intuition 
–  commonly used variables likely to partition state space in useful ways 

close to linear speed-up when using 128 workers  



distributed symbolic execution over cloud 
–  adaptive dynamic partitioning 
–  heuristics to partition jobs on the fly based on system resources and  job characteristics and 

history 
–  close to linear speed-up is possible in > 90% of the cases 

       

fujitsu applications 

Scheduler  
Node 

Worker Nodes 

N1 N2 N3 N4 

Job Queue	


J1	
 J2	
 J3	
 J4	
 J5	


status	
jobs	


Available Resource List	


N3 N4 

Ini$aliza$on	
  
Path	
  Condi$on	
  

New	
  Jobs	
  

Computa$on	
  
at	
  this	
  node	
  

Termina$on	
  
Path	
  
Condi$on	
  

thanks Fujitsu 



abstract state matching 

state matching – subsumption checking  [SPIN’06, J. STTT 2008] 
–  obtained through DFS traversal of “rooted” heap configurations 
–  roots are program variables pointing to the heap 
–  unique labeling for “matched” nodes 
–  check logical implication between numeric constraints 
–  not enough to ensure termination 

 
abstraction 

–  store abstract versions of explored symbolic states  
–  use subsumption checking to determine if an abstract state is re-visited 
–  decide if the search should continue or backtrack 



abstract state matching 

enables analysis of under-approximation of program behavior 
preserves errors to safety properties -- useful for testing 
automated support for two abstractions (inspired by shape analysis [TVLA]) 

–  singly linked lists  
–  arrays 

 
no refinement! 
see [Albarghouthi et al. CAV10] for symbolic execution with automatic 
abstraction-refinement 



state matching with subsumption checking 

E1 

E2 

E3 E4 

E1 > E2 ∧  
E2 > E3 ∧  
E2 ≤ E4 ∧  
E1 > E4 

E1 

E2 

E3 E4 

stored state: 

new state: 

⇒
	



set of concrete  
states represented  

by stored state 

set of concrete  
states represented  

by new state 

⊆
	



⊆
	



E1 > E2 ∧  
E2 > E3 ∧  
E2 < E4 ∧  
E1 > E4 

1:	



2:	



4:	

3:	



1:	



2:	



3:	

 4:	



normalized using existential quantifier elimination 



abstractions for lists and arrays 

shape abstraction for singly linked lists 
–  summarize contiguous list elements not pointed to by program 

variables into summary nodes 
–  valuation of a summary node: union of valuations of summarized nodes  
–  subsumption checking between abstracted states 

same algorithm as subsumption checking for symbolic states 
treat summary node as an “ordinary” node 

 
abstraction for arrays 

–  represent array as a singly linked list 
–  abstraction similar to shape abstraction for linked lists  



abstraction for lists 

E1 = V0 ∧ (E2 = V1 ∨ E2 = V2) ∧ E3 = V3	



PC:  V0 ≤ v ∧ V1 ≤ v ∧ V2 ≤ v	



V0 
next V1 

next 

n 

V2 
next this V3 

next V0 
next { V1 

n 

, V2 } 
next this V3 

next 

V0 
next V1 

next 

n 

V2 
next this V0 

next V1 
next 

n 

V2 
next this 

⊆
	



symbolic states abstracted symbolic states 

2:	

 3:	

1:	



1:	

 2:	

 3:	



PC:  V0 ≤ v ∧ V1 ≤ v	



PC:  V0 ≤ v ∧ V1 ≤ v ∧ V2 ≤ v	



E1 = V0 ∧ E2 = V1  ∧ E3 = V2 	



PC:  V0 ≤ v ∧ V1 ≤ v	



unmatched! 



compositional DART [POPL’07] 

compositional dynamic test generation 
–  use summaries of individual functions like in inter-procedural static analysis 
–  if f calls g, analyze g separately, summarize the results, and use g’s summary 

when analyzing f 
–  a summary φ(g) is a disjunction of path constraints expressed in terms of 

input pre-conditions and output post-conditions: 
         φ(g) = ∨φ(w), with φ(w) = pre(w) ∧ post(w) 

g’s outputs are treated as symbolic inputs to calling function f 
 
SMART 
top-down strategy to compute summaries on a demand-driven basis from 
concrete calling contexts 
same path coverage as DART but can be exponentially faster! 
follow-up work: Anand et al. [TACAS’08], Godefroid et al. [POPL’10] 

P. Godefroid  



example 

program P = {top, is_positive} has 2N feasible paths 
 
DART will perform 2N runs 
 
SMART will perform only 4 runs 
 
2 to compute summary   
φ(is_positive) = (x>0∧ ret=1)  ∨ (x≤0∧ ret=0)  

2 to execute both branches of (*) by solving: 
[(s[0]>0 ∧ret0=1)∨(s[0]≤0∧ret0=0)]∧ 
[(s[1]>0 ∧ret1=1)∨(s[1]≤0∧ret1=0)]∧ … ∧  
[(s[N-1]>0 ∧retN-1=1)∨(s[N-1]≤0∧retN-1=0)]∧ 
(ret0+ret1+ … + retN-1=3) 

 

	
 

	
 

 P. Godefroid  

int is_positive(int x) { 
  if (x>0) return 1; 
  return 0; 
} 
#define N 100 
void top (int s[N]) {// N inputs 
 int i, cnt=0; 
 for (i=0;i<N; i++) 
   cnt=cnt+is_positive(s[i]); 
 if (cnt == 3) error(); // (*) 
 return; 
} 
 



sqrt(pow(((x1 + (e1 * (cos(x4) – cos((x4 + (((1.0 * (((c1 * x5) * (e2/c2))/x6)) * x2)/e1)))))) 
– (((e2/c2)) * (1.0 – cos((c1 * x5))))),2.0)) > 999.0  & (c1 * x5) > 0.0 &  
x3 > 0.0 & x6 > 0.0 & c1 = 0.017… & 
c2 = 68443.0 & e1 = ((pow(x2,2.0)/tan((c1*x3)))/c2) & 
e2 = pow(x6,2.0)/tan(c1*x3) 

example constraint generated for a module from TSAFE (Tactical 
Separation Assisted Flight Environment) 

handling complex mathematical constraints 



coral solver 

target application of solver: programs that  
–  use floating-point arithmetic 
–  call math functions 

 

output:   {x1=100.0, x2=98.48…, x3=3.08…E-11, …} 

TSAFE example 

input:   sqrt(pow(((x1 + (e1 * (cos(x4) – … 

approach: combine meta-heuristic search and interval solving 
[NFM’11, ICST’12] 



meta-heuristic search 

explores candidate solutions 
–  start with random solutions 
–  refine candidate set based on fitness function 
–  inherently incomplete 

local search 
–  uses one single candidate solution 
–  e.g., Alternating Variable Method (AVM), 

hill climbing, simulated annealing, etc. 

global search 
–  uses several candidate solutions 
–   e.g., Particle Swarm Optimization (PSO), 

genetic algorithms, etc. 



interval solving 

another method for constraint solving 

output: {x1=[99.9…, 100.0], x2=[99.9…, 100.0], …}, … 

input: sqrt(pow(((x1 + (e1 * (cos(x4) – … 

interval 

intervals may not contain solutions! 



our approach: combine techniques 

+  good for finding exact 
solutions in large search 
spaces 

-­‐  may get lost in local 
maxima 

+  good for computing parts 
of solution space 

-­‐  does not compute 
solutions 

meta-heuristic search interval solving 

seed meta-heuristic search 
with inputs drawn from intervals 

(intuition: better initial states) 



evaluation 

publicly available applications from the aerospace domain 

TSAFE units 

Subject # constraints # conjuncts # functions 

Apollo Autopilot 800 39 3 

Collision Detection (CDx) 800 63 6 

Conflict Probe 33 7 5 

Turn Logic 329 3 20 



evaluated CORAL configurations 

meta-heuristic search alone 
–  AVM 
–  PSO (previously found it better than GA) 

interval solving w/ RealPaver (RP) alone 
–  RP+RAN (choose random values from interval) 

combinations of IS with global and local search 
–  RP+AVM – optimistic vs RV reported intervals 
–  RP+PSO – not so optimistic 



results for Apollo and CDx 

Apollo CDx 



conclusions for CORAL 

combination solved more constraints than meta-heuristic search or 
interval solving alone 

–  both global and local search help interval solving 
–  complementary: should be run together in parallel 

http://pan.cin.ufpe.br/coral  



 
void test(int x, int y) { 
    if (x > 0) { 
      if (y == hash(x)) 
        S0; 
      else 
        S1; 
      if (x > 3 && y > 10) 
        S3; 
      else 
        S4; 
    } 
} 

S0, S1, S3, S4 =  
statements we wish to cover 

hash is native or can not be 
handled by decision procedure 

handling native code 



hash is native or can not be 
handled by decision procedure 

S0, S1, S3, S4 =  
statements we wish to cover 
 
symbolic execution 
can not handle it! 
 
solution: 
provide “model” for hash  
or 
mixed concrete-symbolic solving 
[ISSTA’11] 
 

 
void test(int x, int y) { 
    if (x > 0) { 
      if (y == hash(x)) 
        S0; 
      else 
        S1; 
      if (x > 3 && y > 10) 
        S3; 
      else 
        S4; 
    } 
} 

handling native code 



mixed concrete-symbolic solving 

use function symbols for external library calls 

split path condition PC into: 
simplePC – solvable constraints 
complexPC – non-linear constraints with function symbols 

solve simplePC 
use obtained solutions to simplify complexPC 

check the result again for satisfiability 

 

similar to DART 



  

    assume hash(x) = 10 *x: 
PC: X>3 ∧ Y>10 ∧ Y=hash(X) 
 
          simplePC        complexPC 
 
solve simplePC 
use solution X=4 to compute h(4)=40 
simplify complexPC: Y=40 
solve again  

 simplified PC: X>3 ∧ Y>10 ∧ Y=40 satisfiable! 

mixed concrete-symbolic solving 



 
void test(int x, int y) { 
    if (x > 0) { 
      if (y == hash(x)) 
        S0; 
      else 
        S1; 
      if (x > 3 && y > 10) 
        S3; 
      else 
        S4; 
    } 
} 
 
native int hash(x) { 
  return x*10; 
}  

symbolic execution 

PC: true 

PC: X>0 PC: X<=0 

PC: X>0 &  
      Y=hash(X) S0 

PC: X>3 & Y>10 & 
      Y=hash(X) S3 

PC: X>0 & X<=3 & 
      Y=hash(X) S4 

… 
solve X>0 
get X=1 
hash(1)=10 
check X>0 &  
            Y=10 

solve X>3 & Y>10 
get X=4 
hash(4)=40 
check X>3 & Y>10     
            & Y=40 



potential for unsoundness 

test (int x, int y) { 
  if (x>=0 && x>y && y == x*x) 
    assert false; 
  else  
    …; 
} 

not reachable 

PC: X>=0 & X > Y & Y = X*X  S0 

X=0, Y=-1  Y=0*0=0  

X>=0 & X>Y Y = X*X  simplePC  complexPC  Must add constraints  
on the solutions back into 
simplified PC 

DART/Concolic  
will diverge instead 

X>=0 & X>Y & Y=0 & X=0 

not sat! 
is sat which implies 
assert is reachable! 

X>=0 & X>Y & Y=0 simplified PC  



example  

EXE results: stmt “S3” not covered DART results: path “S0;S4” not covered 

Mixed concrete-symbolic solving: all paths covered Example 

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X) 

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X) 
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X) 

PC: X>0 & X<=3 

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X) 

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X) 
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X) 

PC: X>0 & X<=3 

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X) 

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X) 
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X) 

PC: X>0 & X<=3 

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X) 

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X) 
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X) 

PC: X>0 & X<=3 

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0
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hash(4)=40
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hash(4)=40
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Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

Predicted path “S0;S4”   
!= path taken “S1;S4” 

//hash(x)=10*x 



 
void test(int x, int y) { 
    if (x > 0) { 
      if (y == hash(x)) 
        S0; 
      else 
        S1; 
      if (x > 3 && y > 10) 
        S3; 
      else 
        S4; 
    } 
} 
 
native int hash(x) { 
  return x*10; 
}  

test(1,0) 

X > 0 

X > 0 & Y != 10 S1 

X>0 & Y!=10 & X<=3 S4 

X>0 & Y!=10 & X>3 

test(4,0) 

X > 0 

X > 0 & Y != 40 S1 

X>0 & Y!=40 & X>3 &  
Y<= 10 S4 

running DART 
X>0 & Y!=40 & X>3 & Y>10 

test(4,11) 

X > 0  

 X > 0 & Y != 40 S1 

X>0 & Y!=40 & X>3 & 
Y>10 S3 

X>0 & Y=40 & X>3 & Y>10 

test(4,40) 

X > 0 

X > 0 & Y = 40 S0 

X>0 & Y=40 & X>3 & Y>10 S3 

X>0 & Y=40 & X<=3 & Y>10 

test(1,40) 

X > 0 

X > 0 & Y != 10 S1 

X>0 & Y!=10 & X<=3 S4 

divergence! 
 
aimed to get S0;S4 
but  reached  S1;S4 



both techniques incomplete 

incomparable in power (see paper) 

mixed concrete-symbolic solving can handle only “pure”, side-
effect free functions 

 DART does not have the limitation; will likely diverge 

 
see also “higher order test generation” – P. Godefroid [PLDI’11]

 uses combination of validity checking and un-interpreted functions 
  generates tests from validity proofs 
  implementation challenge 

 

mixed concrete-symbolic solving vs dart  



testing web applications – challenge 
handling complex constraints involving strings and numerics 
 
String s, q;   
integer a, b; 
s.equals(q) && s.startswith(“uvw”) && q.endswith(“xyz”) &&  
s.length()<a && (a+b)<6 && b>0  
 
unsatisfiable! 

solving string constraints 



solution – string solver 
–  maintain separate constraint set for Integer/Boolean and Real 
–  maintain separate constraint set for string variables – represented as 

FSMs or regular expressions 
–  pass learned constraints from one domain to another and iterate to fixed 

point or time out 

string solver – incorporated in SPF (thanks to Willem Visser … 
still work in progress) 
independent solution provided by Fujitsu 

solving string constraints 
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outline 
Part 1 
!   introduction: symbolic execution 
!   symbolic pathfinder: symbolic 

execution for Java bytecode 
!   input data structures 
!   multi-threading 

Part 2 
!   dynamic techniques 
!   the DART algorithm 
! concolic execution 

Part 3 
!   challenges 
!   solving complex constraints 

!   parallel and compositional 
techniques 

!   abstraction 
!   symbolic execution with mixed 

concrete-symbolic solving 

 

Part 4 
!   applications  
!   current and future work 

 



testing the Onboard Abort Executive (OAE) 

prototype for CEV ascent abort handling being developed by 
JSC GN&C 

Inputs 

Pick Highest Ranked Abort 

Checks Flight Rules  
to see if an abort must occur 

Select Feasible Aborts 

OAE Structure results 
 
baseline 
–  manual testing: time consuming (~1 week) 
–  guided random testing could not cover all aborts 

symbolic pathfinder 
–  generates tests to cover all aborts and flight rules 
–  total execution time is < 1 min 
–  test cases: 151 (some combinations infeasible)  
–  errors: 1 (flight rules broken but no abort picked) 
–  found major bug in new version of OAE 
–  flight Rules: 27 / 27 covered   
–  aborts: 7 / 7 covered 
–  size of input data: 27 values per test case 

[ISSTA’08] 

Orion orbits the moon  
(Image Credit: Lockheed Martin) 



generated test cases and constraints 

test cases: 
// Covers Rule: FR A_2_A_2_B_1: Low Pressure Oxodizer Turbopump speed limit exceeded 
// Output: Abort:IBB 
CaseNum  1; 
CaseLine in.stage_speed=3621.0; 
CaseTime 57.0-102.0; 
 
// Covers Rule: FR A_2_A_2_A: Fuel injector pressure limit exceeded  
// Output: Abort:IBB 
CaseNum  3; 
CaseLine in.stage_pres=4301.0; 
CaseTime 57.0-102.0; 
… 
 

constraints: 
 //Rule: FR A_2_A_1_A: stage1 engine chamber pressure limit exceeded Abort:IA 

PC (~60 constraints): 
in.geod_alt(9000) < 120000 && in.geod_alt(9000) < 38000 && in.geod_alt(9000) < 10000 &&  
in.pres_rate(-2) >= -2 && in.pres_rate(-2) >= -15 && 
in.roll_rate(40) <= 50 && in.yaw_rate(31) <= 41 && in.pitch_rate(70) <= 100 && … 



polyglot 

large programs such as NASA Exploration 
–  build multiple systems that interact via safety-critical protocols  
–  designed with different Statechart variants 
–  a unified verification framework needed  

polyglot 
–  modeling and analysis for multiple Statechart formalisms 
–  captures interactions between components 
–  formal semantics that captures the variants of Statecharts 
–  applied to JPL’s MER arbiter, Ares-Orion communication  

collaboration w/ Vanderbilt University and University of 
Minnesota 

[ISSTA’11,NFM’12] 



Rhapsody 

IMPORT 

Simulink/Stateflow 

Pluggable Semantics 

Generic Execution Environment 

UML Rhapsody 

State machine model in Java 

EXPORT 

Symbolic PathFinder 

Stateflow 

Data interface 

Modeling /  
Intermediate Representation 

 

Error Report 

Systematic 
Analysis 

Sym Exe Tree 

Test 
Sequences 

Constraint 
Solving 

polyglot 



example 

simplified model of the arbiter module 
Mars Exploration Rover 

–  3 Statecharts: 1 server, 2 clients 
–  Server grants/denies/rescinds resources 



example (cont’d) 
server contains: 33 pseudo-states 
(junctions), 15 atomic states, 2 
orthogonal states and 58 transitions; 
108 total elements 
 
each user has 2 pseudostates, 4 atomic 
states, 1 compound state and 9 
transitions; 16 total elements 



114 

fault tolerant version of Ethernet protocol  
used by NASA in space networks  
assure reliable network communications.  

developed PVS model of basic version of the 
TTEthernet protocol  
 
framework for translating models into Java 
multi-threaded code 

SPF analysis 
- filtering of test cases to satisfy the various fault 
hypothesis 
- verification of fault-tolerant properties 
- demonstrated test case generation for 
TTEthernet’s Single Fault Hypothesis 
 
[w/ NASA Langley] 
 

Shown: Minimal configuration for testing           
agreement in TTEthernet 

test generation for ttethernet protocol 



differential symbolic execution – NASA Langley 

37

Vj 

source

diff Vi Vj 

common

Extended 
Symbolic 
Execution

Pre-computed
Summaries

Extended 
Symbolic 
Execution

Vi 

Symbolic 
Summary

Vj 

Symbolic 
Summary

DSE Step 1 DSE Step 2

Check 
Equivalence

Generate 
Deltas

Vi Vj 

DSE Step 3

Vi  Vj 

Client 
Analyses

Vi 

source

Impact Analysis
Test Suite Evolution
Refactoring Assurance
Change Characterization
Selective Re-certification
...

Figure 3.1: DSE Methodology

3.1 Methodology

The DSE methodology performs an automated form of differential program anal-

ysis [53, 79]. It combines advances in symbolic execution [1, 29, 58, 75, 76] with

over-approximating abstract summaries of unchanged sections of code, to detect pro-

gram differences and precisely characterize the execution behaviors of one program

version relative to another. Informally, a program’s execution behavior refers to an

execution path and is represented by pairing a description of input values with the

effects of execution, i.e., the values computed for a given set of inputs. DSE is capable

of (a) demonstrating that two program versions are equivalent, or, if they are not,

(b) characterizing the behavioral differences between versions by identifying the sets

of inputs that cause a different effect.

The DSE methodology is performed in three main steps as illustrated in Figure 3.1.

Given two versions of a program, Vi and Vj, DSE first uses a light-weight static

analysis technique, e.g., source file or AST diff, to identify common code sequences,

i.e., sections of code which are unchanged between program versions. The goal of

this step is to reduce analysis cost by inferring common program behaviors using

computes logical difference between two program versions 
uses loop and method summaries 
[Person et al. FSE’08, Person et al PLDI’11] 



memoized symbolic execution 

stores symbolic execution tree for re-use 
uses trie data structure 

–  stores only the choices in the tree 
–  maintained during successive symbolic execution runs 

 

[ISSTA’12] 



memoise – example 

1 int compute (int curr,  
                      int thresh, 
                      int step) { 
2  int delta = 0; 
3  if(curr<thresh) { 
4     delta = thresh-curr; 
5     if((curr+step)<thresh) 
6       return – delta; 
7     else 
8       return 0; 
9  } else { 
10      int counter=0; 
11      while(curr>=thresh) { 
12        curr=curr-step; 
13        counter++; 
14      }  
15      return counter; 
16    } 
17  }  

curr: S1, thresh: S2, step: S3 
Path condition PC: true 

… delta: 0 

… PC: S1 < S2 … PC: S1 ≥ S2 

… delta: S2-S1 

… PC: S1 < S2 /\  
           S1+S3<S2 

… PC: S1 < S2 /\  
           S1+S3 ≥ S2 

… Return: -(S2-S1) … Return: 0 

… counter: 0 

… PC: S1 ≥ S2 /\    
           S1 < S2   

… PC: S1 ≥ S2 /\ 
           S1 ≥S2   

… curr: S1–S3 

… counter: 1 

… PC: S1 ≥ S2 /\      
           S1-S3<S2   

… Return: 1 

… PC: S1 ≥ S2 /\      
           S1-S3 ≥ S2   

… curr: S1–S3–S3 

[2] 

[3] [3] 

[4] 

[5] [5] 

[6] [8] 

[10] 

[11] [11] 

[12] 

[13] 

[11] [11] 

[15] [12] 

[13] 

Unsat! 

… counter: 2 

[11] [11] 

symbolic execution tree 



memoise – example 

3, 0, compute 3, 1, compute 

5, 0, compute 5, 1, compute 11, 0, compute 11, 1, compute 

11, 0,  compute 11, 1, compute 

Root 
n1 

n3 

n2 

n8 

n5 

n4 n7 n6 

n9 

curr: S1, thresh: S2, step: S3 
Path condition PC: true 

… delta: 0 

… PC: S1 < S2 … PC: S1 ≥ S2 

… delta: S2-S1 

… PC: S1 < S2 /\  
           S1+S3<S2 

… PC: S1 < S2 /\  
           S1+S3 ≥ S2 

… Return: -(S2-S1) … Return: 0 

… counter: 0 

… PC: S1 ≥ S2 /\    
           S1 < S2   

… PC: S1 ≥ S2 /\ 
           S1 ≥S2   

… curr: S1–S3 

… counter: 1 

… PC: S1 ≥ S2 /\      
           S1-S3<S2   

… Return: 1 

… PC: S1 ≥ S2 /\      
           S1-S3 ≥ S2   

… curr: S1–S3–S3 

[2] 

[3] [3] 

[4] 

[5] [5] 

[6] [8] 

[10] 

[11] [11] 

[12] 

[13] 

[11] [11] 

[15] [12] 

[13] 

Unsat! 

… counter: 2 

[11] [11] 

symbolic execution tree memoised tree 



applications 

!   iterative deepening 
–  perform repeated symbolic execution with increasing depth 
–  re-use results from smaller depths when exploring paths at larger 

depths 

!   regression analysis 
–  analyze successive versions of a program 
–  change impact analysis to identify nodes impacted by program change 
–  re-execute only the paths impacted by the change 

!   heuristic guided symbolic execution 
–  heuristic search of program paths, guided by the testing coverage 

achieved so far 
–  iterative deepening – at each iteration discover paths that may lead to 

increased coverage 
–  select only those paths in sub-sequent iterations  



memoise 

results – savings 
!   time (2x improvement) 
!   number of solver calls (up to 1000 less cals) 
!   number of states explored (1 order of magnitude 

improvement) 

more applications 
!   continuous testing 
!   load balancing for parallel execution 
!   partial symbolic execution 
!   component certification 



more enabled analyses 



predictive testing [Majumdar & Sen ICSE’07] 
 

!   predicts errors from correct traces 
!   run an existing test suite 
!   perform a “concolic” execution along concrete tests 
!   check for assertion violations and other types of errors 
!   the assertions that hold along a concrete execution do not 

necessarily hold along the symbolic execution 



robustness analysis [Majumdar & Saha RTSS’09] 
 

!   checks whether small perturbations in inputs cause only small 
changes in outputs 

!   based on symbolic execution and non-linear optimization 
!   computes maximum difference in program outputs over all 

program paths when a program input is perturbed 
!   generates a set of test vectors which demonstrate the worst-

case deviations in outputs for small deviations in inputs 



load testing [Zhang et al. ASE’11] 

!   validates whether system performance is acceptable under 
peak conditions 

!   symbolic execution used to compute values that induce load 
!   iterative-deepening approach favors program paths associated 

with a performance measure  
!   generated test suites induce program response times and 

memory consumption worse than compared alternatives 
 
 
 
 
testing DB and GUI applications, security 
many more … 



1: d=d+1; 
2:  if (x > y) 
3:    return d / (x-y); 
     else  
4:    return d / (y-x); 
      

PC: X>Y 

x: X, y: Y, d: D+1 
PC: true  

PC: X<=Y 

PC: X>Y 
return:  
   (D+1)/(X-Y)   

PC: X<=Y  & Y-X!=0 
return:  
  (D+1)/(Y-X)   

PC: X<=Y & Y-X=0 
Division by zero!   

Solve path conditions → test inputs 

Method m: 

Symbolic execution tree: 

[2:] [2:] 

[3:] [4:] [4:] 

x: X, y: Y, d: D 
Path condition PC: true  

[1:] 

a detailed example – “continuous” testing 



auto-generated Junit tests 

@Test public void t1() { 
    m(1, 0, 1); 
} 
@Test public void t2() { 
    m(0, 1, 1); 
} 
@Test public void t3() { 
    m(1, 1, 1); 
} 
 
 
 
 
 

 
full path coverage 

Pass ✔ 

Pass ✔ 

Fail  ✗  PC: X<=Y & Y-X=0 ó X=Y 



program repair and synthesis 

add JML pre-condition: 
@Requires(“x!=y) 

add argument check in m: 
if(x==y) throw new IllegalArgumentException(“requires: x!=y”) 

add expected clause to test t3: 
@Test(expected=ArithmeticException.class) 
  public void t3() { 
    m(1, 1, 1); 
  } 

will fix the error or produce more useful output 
one can do more sophisticated program repairs. 
see e.g. [ICSE’11 “Angelic Debugging”] 



invariant generation 

pre-condition: 
  “x!=y” 

post-condition: 
 “\result==((x>y) ? (d+1)/(x-y) : (d+1)/(y-x))”  

use inductive and machine learning techniques to generate loop invariants 
see DySy [Csallner et al ICSE’08], also [SPIN’04] 



Induction Step 

Base Case 

proving properties of programs 

X = init; 
while (C(X))  
      X = B(X); 
assert P(X); 

Looping program: 

Program execution: 

while … 
true 

while … 
true 

while … 
true 

… 
May be infinite … 
 
How to reason about  
infinite executions? 
 
 

Has finite execution. 
Easy to reason about! 
 
Problem:  
How do we come up with Inv? 
Requires great user ingenuity. 
Many techniques that try to come up with Inv automatically. 

X = init; 
assert Inv(X); 
X = new symbolic values; 
assume Inv(X); 
if (C(X)) {  
      X = B(X); 
      assert Inv(X);  
} else 
      assert P(X); 

Non-looping program: 

Find loop  
invariant Inv 



symbolic execution and software testing 
 

King [Comm. ACM 1976] , Clarke [IEEE TSE 1976] 
tools, many open-source 

–  NASA’s Symbolic (Java) Pathfinder 
     http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc 

–  UIUC’s CUTE and jCUTE 
     http://osl.cs.uiuc.edu/~ksen/cute 

–  Stanford/Imperial KLEE 
     http://klee.llvm.org/ 

–  UC Berkeley’s CREST and BitBlaze 
     http://code.google.com/p/crest 

–  Microsoft’s Pex, SAGE, YOGI, PREfix 
     http://research.microsoft.com/en-us/projects/pex/ 
     http://research.microsoft.com/en-us/projects/yogi 

–  IBM’s Apollo, Parasoft’s testing tools 
–  Doron Peled’s PET tool [CAV 2000] 
–  … 

bibliography on symbolic execution (Saswat Anand): 
http://sites.google.com/site/symexbib/ 



scalability 
–  Pruning redundant paths [Boonstoppel et al, TACAS’08] 
–  Heuristic search [Brunim & Sen, ASE’08] [Majumdar & Se, ICSE’07] 
–  Parallel techniques [Siddiqui & Khurshid, ICSTE’10] [Staats & Pasareanu, 

ISSTA’10] 
–  Compositional techniques [Godefroid, POPL’07] 
–  Incremental techniques [Person et al, PLDI’11] 
–  Loop abstraction [Saxena et al ISSTA’09] [Godefroid ISSTA’11] [Strejček and 

Trtík ISSTA’12] 
complex non-linear mathematical constraints  

–  Un-decidable or hard to solve 
–  Heuristic solving [Lakhotia et al., ICTSS’10][Souza et al, NFM’11] 

testing web applications and security problems 
–  String constraints [Bjorner et al, 2009] … 
–  Mixed numeric and string constraints [ISSTA’11] [Fujitsu] 

 
not covered 

–  Symbolic execution for formal verification [Coen-Porisini et al, ESEC/FSE’01], [Dillon, 
ACM TOPLAS’90], [Harrison & Kemmerer’88] 

–  Forward vs backward symbolic execution, precision issues … 

challenges 



current and future work for spf 

!   memoization [ISSTA’12 – Yang et al.] 
–  saves symbolic execution tree for re-use 

!   probabilistic symbolic execution [ISSTA’12 – Dwyer et al.] 
–  uses model counting for PCs to compute the probability of program 

statements 

!   new “green” constraint solver [FSE’12 – Visser et al.] 
–  caches constraints for re-use 

!   reliability analysis (w/ A. Filieri and W. Visser) 
–  computes probability of success or failure based on probabilistic usage profile 
–  handles loops, multi-threading, data structures 

!   test case generation for Android apps 
!   program specialization 
!   multi-threading … 



 
Thank you! 

 
 


