

Symbolic Execution

and Software Testing
Part 1

Corina Păsăreanu
CMU Silicon Valley/ NASA Ames Research Center

NATO International Summer School 2012,

Marktoberdorf, Germany

outline
Part 1
!   introduction: symbolic execution
!   symbolic pathfinder: symbolic

execution for Java bytecode
!   input data structures
!   multi-threading

Part 2
!   dynamic techniques
!   the DART algorithm
! concolic execution

Part 3
!   challenges
!   solving complex constraints

!   parallel and compositional
techniques

!   abstraction
!   symbolic execution with mixed

concrete-symbolic solving

Part 4
!   applications
!   current and future work

 errors are expensive …
 annual cost of software errors to US economy is $ ~60B [NIST’02]

software is everywhere

approaches to finding errors

model checking
automatic, exhaustive
scalability issues

static analysis

automatic, scalable, exhaustive
reported errors may be spurious

testing
reported errors are real
may miss errors
well accepted technique; state of practice

our approach

combine model checking and symbolic
execution for test case generation

testing vs model checking

OK
testing / simulation

error

OK

test oracle

model checking

error trace
Line 5: …
Line 12: …
…
Line 41:…
Line 47:…

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

program / model

always(ϕ orψ)

property

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

program / model

java pathfinder (jpf)

extensible virtual machine framework for java bytecode verification
workbench to implement all kinds of verification tools

typical use cases:

software model checking (detection of deadlocks, races, assert errors)
test case generation (symbolic execution) ... and many more

java pathfinder (jpf)

scalability
on-the-fly partial order reduction
configurable search strategies
user definable heuristics, choice generators

awards
NASA 2003, IBM 2007, FLC 2009

open sourced
http://babelfish.arc.nasa.gov/trac/jpf

largest application
Fujitsu (one million lines of code)

symbolic pathfinder (spf)

combines symbolic execution, model checking and constraint solving
applies to executable models and code
handles dynamic data structures, loops, recursion, multi-threading; arrays and strings
java pathfinder extension project [TACAS’03, ISSTA’08, ASE’10]

Error Report

Systematic
Analysis

Sym Exe Tree

Test
Sequences

Constraint
Solving Java bytecode

symbolic pathfinder (spf)

users

academia

 uiuc.edu, unl.edu, utexas.edu, byu.edu, umn.edu, Stellenbosch Za,
 Waterloo Ca, Charles University Prague Cz, …

industry (Fujitsu)
NASA (Ames, Langley)

Error Report

Systematic
Analysis

Sym Exe Tree

Test
Sequences

Constraint
Solving Java bytecode

symbolic pathfinder (spf)

symbolic execution

King [Comm. ACM 1976], Clarke [IEEE TSE 1976]

analysis of programs with unspecified inputs

–  execute a program on symbolic inputs
symbolic states represent sets of concrete states
for each path, build path condition

–  condition on inputs – for the execution to follow that path
–  check path condition satisfiability – explore only feasible paths

symbolic state
–  symbolic values/expressions for variables
–  path condition
–  program counter

received renewed interest in recent years … due to
–  algorithmic advances
–  increased availability of computational power and decision procedures

applications
–  test-case generation, error detection, …

tools, many open-source
–  UIUC: CUTE, jCUTE, Stanford: EXE, KLEE, UC Berkeley: CREST, BitBlaze
–  Microsoft’s Pex, SAGE, YOGI, PREfix
–  NASA’s Symbolic (Java) Pathfinder
–  IBM’s Apollo, Parasoft’s testing tools etc.

symbolic execution

x = 1, y = 0	

1 > 0 ? true	

x = 1 + 0 = 1	

y = 1 – 0 = 1	

x = 1 – 1 = 0	

0 > 1 ? false	

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

Concrete Execution Path Code that swaps 2 integers

example: standard execution

[PC:true]x = X,y = Y	

[PC:true] X > Y ?	

[PC:X>Y]y = X+Y–Y = X	

[PC:X>Y]x = X+Y–X = Y	

[PC:X>Y]Y>X ?	

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

Code that swaps 2 integers Symbolic Execution Tree

[PC:X≤Y]END	
 [PC:X>Y]x= X+Y	

false	
 true	

[PC:X>Y∧Y≤X]END	
 [PC:X>Y∧Y>X]END	

false	
 true	

path condition	

False!	

Solve PCs: obtain test inputs

example: symbolic execution

testing coverage

!   statement and branch coverage
!   state and transition coverage
!   path coverage (default)
!   MC/DC (modified condition/decision coverage)
!   predicate coverage

coverage

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

statement coverage

java pathfinder (jpf) used for systematic exploration
–  symbolic execution tree
–  multi-threading
–  property checking
–  backtracking – when PC un-satisfiable
–  different search strategies (depth-first, breadth-first)

lazy initialization for input data structures [TACAS’03]

–  non-determinism handles aliasing in input data structures
–  different heap configurations explored explicitely

takes advantage of jpf’s optimizations!

symbolic pathfinder (spf)

no state matching performed
–  some abstract state matching

symbolic search space may be infinite due to loops, recursion
–  we put a limit on the search depth

symbolic pathfinder (spf)

implementation

non-standard interpreter of byte-codes
–  replaces concrete execution semantics of byte-codes with symbolic

execution

–  enables jpf-core to perform systematic symbolic analysis

attributes
–  symbolic information stored in attributes associated with the

program data

–  propagated dynamically during symbolic execution

implementation

choice generators
–  handle non-deterministic choices in branching conditions

listeners
–  collect and print results: path conditions, test vectors or test

sequences

–  influence the search

native peers
–  model native libraries

–  e.g. capture Math library calls and send them to the constraint
solver

mixed concrete-symbolic solving

example: IADD

public class IADD extends
Instruction { …

 public Instruction execute(…
ThreadInfo th){

 int v1 = th.pop();
 int v2 = th.pop();
 th.push(v1+v2,…);
 return getNext(th);

 }
}

public class IADD extends
 ….bytecode.IADD { …
 public Instruction execute(…
 ThreadInfo th){
 Expression sym_v1 = ….getOperandAttr(0);
 Expression sym_v2 = ….getOperandAttr(1);
 if (sym_v1 == null && sym_v2 == null)
 // both values are concrete
 return super.execute(… th);
 else {

 int v1 = th.pop();
 int v2 = th.pop();
 th.push(0,…); // don’t care
 …
 ….setOperandAttr(Expression._plus(
 sym_v1,sym_v2));
 return getNext(th);

 }
 }
}

Concrete execution of IADD byte-code: Symbolic execution of IADD byte-code:

example: IFGE

public class IFGE extends
Instruction { …

 public Instruction execute(…
ThreadInfo th){

 cond = (th.pop() >=0);
 if (cond)

 next = getTarget();
 else

 next = getNext(th);
 return next;

 }
}

public class IFGE extends
 ….bytecode.IFGE { …
 public Instruction execute(…
 ThreadInfo th){
 Expression sym_v = ….getOperandAttr();
 if (sym_v == null)
 // the condition is concrete
 return super.execute(… th);
 else {

 PCChoiceGen cg = new PCChoiceGen(2);…
 cond = cg.getNextChoice()==0?false:true;
 if (cond) {

 pc._add_GE(sym_v,0);
 next = getTarget();
 }
 else {
 pc._add_LT(sym_v,0);
 next = getNext(th);
 }
 if (!pc.satisfiable()) … // JPF backtrack
 else cg.setPC(pc);
 return next;
 } } }

Concrete execution of IFGE byte-code: Symbolic execution of IFGE byte-code:

decision procedures

used to check path conditions
–  if path condition is un-satisfiable, backtrack
–  solutions of satisfiable constraints used as test inputs

SMT solvers
–  Satisfiability Modulo Theories
–  given a formula in first-order logic, with associated background

theories, is the formula satisfiable?

see also:
–  SMTLIB -- repository for SMT formulas (common format) and tools
–  SMTCOMP – annual competition of SMT solvers

decision procedures

! spf uses
–  SMT solvers: Yices, CVC3
–  solvers for complex constraints: Choco, Coral
–  string solvers: Hampi, IASolver …

!   generic interface
–  easy to extend with new constraint solvers and decision procedures

!   new interface [Visser et al FSE’12]

mathematical functions

model-level interpretation

Math.sin $x + 1 sin($x + 1)

symbolic expression
w/ un-interpreted function handled

directly by solver (Choco)

challenge

lazy initialization [TACAS’03, SPIN’05]
non-determinism handles aliasing

–  jpf explores different heap configurations explicitly

implementation

–  GETFIELD, GETSTATIC bytecode instructions modified
–  listener prints input heap constraints and method effects

(outputs)

input data structures

example

class Node {
int elem;
Node next;

Node swapNode() {
 if (next != null)
 if (elem > next.elem) {
 Node t = next;
 next = t.next;
 t.next = this;
 return t;
 }
 return this;
}

}

? null

E0 E1

E0

E0 E1 null

E0 E1 ?

E0 E1

E0 E1

Input list + Constraint Output list

E0 > E1

true

E0 <= E1

none

E0 > E1

E0 > E1

E0 > E1

E1 E0 ?

E1 E0

E1 E0

E1 E0 null

E0 E1

E0

? null

NullPointerException

lazy initialization

E0
next

E1
next

t
null

t
E0

next
E1

next
?

next
E0

next
E1

t next E0 next E1

next

t

E0
next

E1
next

t

consider executing
next = t.next;

E0 E1
next

t
null

next

t
E0 E1

next
?

next
next

lazy initialization

if (f is uninitialized) {
if(f is reference field of type T) {

 non-deterministically initialize f to
•  null
•  a new object of type T (with un-initialized fields)
•  a previosly initialized object of type T

}
if (f is numeric or string field) {

 initialize f to a new symbolic value
}

}

lazy initialization and garbage collection

class TreeNode {
int elem;

 TreeNode left;
 TreeNode right;

void GCIssue() {

 if(left !=null)
 left = null;
 if(right!=null)
 right=null;
}

}

?
left right

?
left right

?
left right

?
left right

?
left right

null

garbage collection

Solution:
No garbage collection
for objects created with
lazy initialization!

test generation for input data structures

generated constraints with lazy initialization
PCconstraint # = 1
input[320].elem > input[320].next[247].elem
heap PCconstraint # = 6
input[320].next[247].next[248] != input[320] &&
input[320].next[247].next[248] != input[320].next[247] &&
input[320].next[247].next[248] != CONST_-1 &&
input[320].next[247] != input[320] &&
input[320].next[247] != CONST_-1 &&
input[320] != CONST_-1

use Korat to solve them/generate test inputs
–  a tool for constraint-based generation of structurally complex test

inputs for Java programs.
http://korat.sourceforge.net/

test sequence generation [ISSTA’04,ISSTA’06]

Java component
(Binary Search Tree,

UI)

add(e)

remove(e)

find(e)

Interface

Generated test sequence:
BinTree t = new BinTree();
 t.add(1);
 t.add(2);
 t.remove(1);

SymbolicSequenceListener generates JUnit tests:
–  method sequences (up to user-specified depth)
–  method parameters

JUnit tests can be run directly by the developers
measure coverage
support for abstract state matching
extract specifications

test sequence generation

applications

NASA control software [ISSTA’08]
–  manual testing: time consuming (~1 week)
–  guided random testing could not obtain full coverage
–  spf generated ~200 tests to obtain full coverage in <1min
–  found major bug in new version

Polyglot [ISSTA’11, NFM’12]
–  analysis and test case generation for UML, Stateflow and Rhapsody models
–  pluggable semantics for different statechart formalisms
–  analyzed MER Arbiter, Ares-Orion communication

Tactical Separation Assisted Flight Environment (T-SAFE) [NFM’11, ICST’12]
–  integration with CORAL for solving complex mathematical constraints

test case generation for Android apps …

Orion orbits the moon
(Image Credit: Lockheed Martin)

symbolic pathfinder

available from jpf distribution
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

how to run spf

go to: http://babelfish.arc.nasa.gov/trac/jpf/
download: jpf-core and jpf-symbc
set up the site properties
examples in jpf-symbc

 src/examples/summerschool

how to run them (in eclipse):

 select a .jpf configuration file
 run with run-JPF-symbc

Symbolic Execution

and Software Testing
Part 2

Corina Păsăreanu
CMU Silicon Valley/ NASA Ames Research Center

NATO International Summer School 2012,

Marktoberdorf, Germany

outline
Part 1
!   introduction: symbolic execution
!   symbolic pathfinder: symbolic

execution for Java bytecode
!   input data structures
!   multi-threading

Part 2
!   dynamic techniques
!   the DART algorithm
! concolic execution

Part 3
!   challenges
!   solving complex constraints

!   parallel and compositional
techniques

!   abstraction
!   symbolic execution with mixed

concrete-symbolic solving

Part 4
!   applications
!   current and future work

symbolic execution

King [Comm. ACM 1976], Clarke [IEEE TSE 1976]

analysis of programs with unspecified inputs

–  execute a program on symbolic inputs
symbolic states represent sets of concrete states
for each path, build path condition

–  condition on inputs – for the execution to follow that path
–  check path condition satisfiability – explore only feasible paths

symbolic state
–  symbolic values/expressions for variables
–  path condition
–  program counter

[PC:true]x = X,y = Y	

[PC:true] X > Y ?	

[PC:X>Y]y = X+Y–Y = X	

[PC:X>Y]x = X+Y–X = Y	

[PC:X>Y]Y>X ?	

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

Code that swaps 2 integers Symbolic Execution Tree

[PC:X≤Y]END	
 [PC:X>Y]x= X+Y	

false	
 true	

[PC:X>Y∧Y≤X]END	
 [PC:X>Y∧Y>X]END	

false	
 true	

path condition	

False!	

Solve PCs: obtain test inputs

example: symbolic execution

symbolic pathfinder (spf)

combines symbolic execution, model checking and constraint solving

applies to executable models and code

handles dynamic data structures, loops, recursion, multi-threading; arrays and strings

java pathfinder extension project [TACAS’03, ISSTA’08, ASE’10]

Error Report

Systematic
Analysis

Sym Exe Tree

Test
Sequences

Constraint
Solving Java bytecode

symbolic pathfinder (spf)

dynamic techniques

classic symbolic execution is a static technique

dynamic techniques

–  collect symbolic constraints during concrete executions
–  DART = Directed Automated Random Testing
–  Concolic (Concrete Symbolic) testing

P. Godefroid

dynamic test generation
–  run the program starting with some random inputs
–  gather symbolic constraints on inputs at conditional statements
–  use a constraint solver to generate new test inputs
–  repeat the process until a specific program path or statement is

reached (classic dynamic test generation [Korel90])
–  or repeat the process to attempt to cover ALL feasible program paths

(DART [Godefroid et al PLDI’05])

detect crashes, assert violations, runtime errors etc.

thanks P. Godefroid

dynamic techniques

DART: Directed Automated Random Testing

1.  Automated extraction of program interface from source
code

2.  Generation of test driver for random testing through the
interface

3.  Dynamic test generation to direct executions along
alternative program paths
–  Together: (1)+(2)+(3) = DART
–  DART can detect program crashes and assertion violations.
–  Any program that compiles can be run and tested this way:

No need to write any test driver or harness code!
–  (Pre- and post-conditions can be added to generated test-driver)

directed search

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 0, y = 0 create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

directed search

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 0, y = 0

create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

x ≤ y

Solve: !(x≤y)

Solution: x=1, y=0

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 1, y = 0 create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

directed search

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 1, y = 0

create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

x > y

directed search

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 1, y = 0

create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

x > y

x = x+y

directed search

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 1, y = 1

create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

x > y

y = x
x = x+y

directed search

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 0, y = 1

create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

x > y

y = x

x = y

directed search

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 0, y = 1

create symbolic
variables x, y

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

x > y

y = x

x = y

y ≤ x

Solve: x> y AND !(y≤x)

Impossible: DONE!

directed search

another example

void test(int x, int y) {	

 int z = x*x*x;	

 if (y==z)	

 assert false;	

}	

using concrete values

the power of DART

Concrete
Execution

Symbolic
Execution

 Path
Constraint

x = 3, y = 7 create symbolic
variables x, y

void test(int x, int y) {	

 int z = x*x*x;	

 if (y==z)	

 assert false;	

}	

the power of DART

Concrete
Execution

Symbolic
Execution

 Path
Constraint

z = 27

void test(int x, int y) {	

 int z = x*x*x;	

 if (y==z)	

 assert false;	

}	

x = 3, y = 7

z = x*x*x

create symbolic
variables x, y

the power of DART

Concrete
Execution

Symbolic
Execution

 Path
Constraint

z = 27

void test(int x, int y) {	

 int z = x*x*x;	

 if (y==z)	

 assert false;	

}	

x = 3, y = 7

z = x*x*x

create symbolic
variables x, y

y != x*x*x

Solve: !(y!=x*x*x)

Non-linear -- not
possible to solve!

the power of DART

Concrete
Execution

Symbolic
Execution

 Path
Constraint

z = 27

void test(int x, int y) {	

 int z = x*x*x;	

 if (y==z)	

 assert false;	

}	

x = 3, y = 7

z = x*x*x

create symbolic
variables x, y

y != x*x*x

Solve: !(y!=x*x*x)

DART solution: use
concrete value of z

the power of DART

Concrete
Execution

Symbolic
Execution

 Path
Constraint

z = 27

void test(int x, int y) {	

 int z = x*x*x;	

 if (y==z)	

 assert false;	

}	

x = 3, y = 7

z = x*x*x

create symbolic
variables x, y

y != x*x*x

Solve: !(y!=27)

DART solution: use
concrete value of z

the power of DART

Concrete
Execution

Symbolic
Execution

 Path
Constraint

z = 27

void test(int x, int y) {	

 int z = x*x*x;	

 if (y==z)	

 assert false;	

}	

x = 3, y = 27

z = x*x*x

create symbolic
variables x, y

Y == x*x*x

Error discovered!

very popular
easy to implement
implemented and extended in many interesting ways
many tools

–  PEX, SAGE, CUTE, jCUTE, CREST, SPLAT, etc

many applications
–  bug finding, security, web and database applications, etc.

EXE (Stanford Univ. [Cadar et al TISSEC 2008])

–  related dynamic approach to symbolic execution

DART: Directed Automated Random Testing

white-box fuzzing [NDSS’08]

white-box Fuzzing = “DART meets Fuzz”
–  Black-box Fuzzing = randomly “fuzz”(modify) a well-formed input; simple but

effective
apply DART to large applications (not unit)

–  Binary level
–  Thousands of inputs, millions of instructions

start with a well-formed input (not random)
combine with a generational search (not DFS)

–  negate 1-by-1 each constraint in a path constraint
–  generate many children for each parent run
–  challenge all the layers of the application sooner
–  leverage expensive symbolic execution

search spaces are huge, the search is partial…
yet effective at finding bugs !

Gen 1
parent

SAGE

SAGE found many new security bugs in Windows applications

 Cost of each Microsoft Security Bulletin: $Millions

 Cost due to worms (Slammer, CodeRed, Blaster, etc.):$Billions

apps: image processors, media players, file decoders,…

many bugs triaged as “security critical, severity 1, priority 1” (would
trigger Microsoft security bulletin if known outside MS)

bugs missed by black-box fuzzers or static analysis

used daily in various Microsoft groups

Thanks P. Godefroid

CUTE, jCUTE, CREST, PEX

CUTE (for C) and jCUTE (for Java)
–  extends DART to handle multi-threading programs with dynamic data

structures
–  pointer constraints and dynamic partial order reduction

CREST is a new extensible open source tool that performs
dynamic testing for C
PEX is Microsoft’s dynamic testing tool for .NET code

many, many other tools …

PEX

!   Pex is a Visual Studio 2010 Power Tool
–  http://msdn.microsoft.com/en-us/vstudio/bb980963.aspx
–  Power Tools are a set of enhancements, tools and command-line

utilities

!   used by several groups within Microsoft
!   externally, available under academic and commercial licenses
!   Pex in the browser

–  http://pexforfun.com

Thanks N. Tillmann

EXE and KLEE

symbolic execution tools for C
–  perform mixed symbolic/concrete execution
–  model memory with bit-level accuracy
–  systems code often treats memory as un-typed bytes

and observes a single memory location in multiple ways

employ various constraint-solver optimizations, in
addition to those implemented in the STP solver:

–  irrelevant constraint elimination, cex caching, etc.

use search heuristics to get high-coverage
can interact with the external environment (KLEE)

UNIX file systems ext2, ext3, JFS

UNIX utilities Coreutils, Busybox, Minix

MINIX device drivers pci, lance, sb16

Library code PCRE, uClibc, Pintos

Packet filters FreeBSD BPF, Linux BPF

Networking servers udhcpd, Bonjour, Avahi, WsMp3

Operating Systems HiStar kernel

OpenCV Computer vision code

EXE and KLEE

targeted at low-level systems code.
found bugs (including security vulnerabilities)

KLEE

open-sourced in June 2009
extended by several research groups

–  wireless sensor networks

–  schedule memoization in multithreaded code

–  automated debugging

–  online gaming

–  exploit generation, etc.

http://klee.llvm.org

Thanks C. Cadar

Symbolic Execution

and Software Testing
Part 3

Corina Păsăreanu
CMU Silicon Valley/ NASA Ames Research Center

NATO International Summer School 2012,

Marktoberdorf, Germany

outline
Part 1
!   introduction: symbolic execution
!   symbolic pathfinder: symbolic

execution for Java bytecode
!   input data structures
!   multi-threading

Part 2
!   dynamic techniques
!   the DART algorithm
! concolic execution

Part 3
!   challenges
!   solving complex constraints

!   parallel and compositional
techniques

!   abstraction
!   symbolic execution with mixed

concrete-symbolic solving

Part 4
!   applications
!   current and future work

challenges

 path explosion

 complex constraints

 handling native calls

path explosion

symbolic execution of a program may result in a very large,
possibly infinite number of paths

 void test(int n) {
 int x = 0;
 while(x < n)
 x = x + 1;
 }

example code

infinite symbolic execution tree

n:S
PC:true

n:S,x:0
PC:true

n:S,x:1
PC:0<S

n:S,x:0
PC:0<S

n:S,x:0
PC:0>=S

n:S,x:1
PC:0<S ∧ 1>=S

n:S,x:1
PC:0<S ∧ 1<S

 ...

loops and recursion

solutions

dealing with loops and recursion
–  put bound on search depth or on number of PCs
–  stop search when desired coverage achieved
–  loop abstraction [Saxena et al ISSTA’09] [Godefroid ISSTA’11]

[Strejček and Trtík ISSTA’12]

addressing path explosion

–  parallel symbolic execution
–  abstract state matching
–  compositional DART = SMART

loop summaries

void test(int n) {
 int i=0;
 while(n>0) {
 if(i==200) assert false;
 i=i+1;
 n=n-1;
 }
 if (i==100) assert false;
}

symbolic execution
•  generates 201 tests to hit 1st

assertion
•  possibly runs forever, without

hitting 2nd assertion

use loop invariant
•  i+n=Symn

loop summary (last iteration)
•  Preloop=(Symn>0)
•  Postloop= (n=1 & i+n=Symn)

simplified from [Godefroid&Luchaup ISSTA’11]

loop summaries

void test(int n) {
 int i=0;
 while(n>0) {
 if(i==200) assert false;
 i=i+1;
 n=n-1;
 }
 if (i==100) assert false;
}

on last loop iteration
•  update PC with Preloop=(Symn>0)
•  update symbolic state with

Postloop= (n=1 & i+n=Symn), i.e.
i=Sym_n-1

results in PC
•  Symn>0 & Symn-1!=200 & Symn!

=100

running DART on n=0
•  will generate 4 tests to hit both

assertions

symbolic execution very amenable to parallelization
no sharing between sub-trees

parallel symbolic execution

balancing partitions

nicely balanced – linear speedup poorly balanced – no speedup

simple static partitioning [ISSTA’10]

dynamic partitioning [Andrew King’s Masters Thesis at KSU, Cloud9 at EPFL,
Fujitsu]

simple static partitioning

static partitioning of tree with light dynamic load balancing
–  flexible, little communication overhead

constraint-based partitioning
–  constraints used as initial pre-conditions
–  constraints are disjoint and complete

approach
–  shallow symbolic execution => produces large number of constraints
–  constraints selection – according to frequency of variables
–  combinatorial partition creation

intuition
–  commonly used variables likely to partition state space in useful ways

close to linear speed-up when using 128 workers

distributed symbolic execution over cloud
–  adaptive dynamic partitioning
–  heuristics to partition jobs on the fly based on system resources and job characteristics and

history
–  close to linear speed-up is possible in > 90% of the cases

fujitsu applications

Scheduler
Node

Worker Nodes

N1 N2 N3 N4

Job Queue	

J1	 J2	 J3	 J4	 J5	

status	jobs	

Available Resource List	

N3 N4

Ini$aliza$on	
Path	 Condi$on	

New	 Jobs	

Computa$on	
at	 this	 node	

Termina$on	
Path	
Condi$on	

thanks Fujitsu

abstract state matching

state matching – subsumption checking [SPIN’06, J. STTT 2008]
–  obtained through DFS traversal of “rooted” heap configurations
–  roots are program variables pointing to the heap
–  unique labeling for “matched” nodes
–  check logical implication between numeric constraints
–  not enough to ensure termination

abstraction

–  store abstract versions of explored symbolic states
–  use subsumption checking to determine if an abstract state is re-visited
–  decide if the search should continue or backtrack

abstract state matching

enables analysis of under-approximation of program behavior
preserves errors to safety properties -- useful for testing
automated support for two abstractions (inspired by shape analysis [TVLA])

–  singly linked lists
–  arrays

no refinement!
see [Albarghouthi et al. CAV10] for symbolic execution with automatic
abstraction-refinement

state matching with subsumption checking

E1

E2

E3 E4

E1 > E2 ∧
E2 > E3 ∧
E2 ≤ E4 ∧
E1 > E4

E1

E2

E3 E4

stored state:

new state:

⇒
	

set of concrete
states represented

by stored state

set of concrete
states represented

by new state

⊆
	

⊆
	

E1 > E2 ∧
E2 > E3 ∧
E2 < E4 ∧
E1 > E4

1:	

2:	

4:	
3:	

1:	

2:	

3:	
 4:	

normalized using existential quantifier elimination

abstractions for lists and arrays

shape abstraction for singly linked lists
–  summarize contiguous list elements not pointed to by program

variables into summary nodes
–  valuation of a summary node: union of valuations of summarized nodes
–  subsumption checking between abstracted states

same algorithm as subsumption checking for symbolic states
treat summary node as an “ordinary” node

abstraction for arrays

–  represent array as a singly linked list
–  abstraction similar to shape abstraction for linked lists

abstraction for lists

E1 = V0 ∧ (E2 = V1 ∨ E2 = V2) ∧ E3 = V3	

PC: V0 ≤ v ∧ V1 ≤ v ∧ V2 ≤ v	

V0
next V1

next

n

V2
next this V3

next V0
next { V1

n

, V2 }
next this V3

next

V0
next V1

next

n

V2
next this V0

next V1
next

n

V2
next this

⊆
	

symbolic states abstracted symbolic states

2:	
 3:	
1:	

1:	
 2:	
 3:	

PC: V0 ≤ v ∧ V1 ≤ v	

PC: V0 ≤ v ∧ V1 ≤ v ∧ V2 ≤ v	

E1 = V0 ∧ E2 = V1 ∧ E3 = V2 	

PC: V0 ≤ v ∧ V1 ≤ v	

unmatched!

compositional DART [POPL’07]

compositional dynamic test generation
–  use summaries of individual functions like in inter-procedural static analysis
–  if f calls g, analyze g separately, summarize the results, and use g’s summary

when analyzing f
–  a summary φ(g) is a disjunction of path constraints expressed in terms of

input pre-conditions and output post-conditions:
 φ(g) = ∨φ(w), with φ(w) = pre(w) ∧ post(w)

g’s outputs are treated as symbolic inputs to calling function f

SMART
top-down strategy to compute summaries on a demand-driven basis from
concrete calling contexts
same path coverage as DART but can be exponentially faster!
follow-up work: Anand et al. [TACAS’08], Godefroid et al. [POPL’10]

P. Godefroid

example

program P = {top, is_positive} has 2N feasible paths

DART will perform 2N runs

SMART will perform only 4 runs

2 to compute summary
φ(is_positive) = (x>0∧ ret=1) ∨ (x≤0∧ ret=0)

2 to execute both branches of (*) by solving:
[(s[0]>0 ∧ret0=1)∨(s[0]≤0∧ret0=0)]∧
[(s[1]>0 ∧ret1=1)∨(s[1]≤0∧ret1=0)]∧ … ∧
[(s[N-1]>0 ∧retN-1=1)∨(s[N-1]≤0∧retN-1=0)]∧
(ret0+ret1+ … + retN-1=3)

	

	

 P. Godefroid

int is_positive(int x) {
 if (x>0) return 1;
 return 0;
}
#define N 100
void top (int s[N]) {// N inputs
 int i, cnt=0;
 for (i=0;i<N; i++)
 cnt=cnt+is_positive(s[i]);
 if (cnt == 3) error(); // (*)
 return;
}

sqrt(pow(((x1 + (e1 * (cos(x4) – cos((x4 + (((1.0 * (((c1 * x5) * (e2/c2))/x6)) * x2)/e1))))))
– (((e2/c2)) * (1.0 – cos((c1 * x5))))),2.0)) > 999.0 & (c1 * x5) > 0.0 &
x3 > 0.0 & x6 > 0.0 & c1 = 0.017… &
c2 = 68443.0 & e1 = ((pow(x2,2.0)/tan((c1*x3)))/c2) &
e2 = pow(x6,2.0)/tan(c1*x3)

example constraint generated for a module from TSAFE (Tactical
Separation Assisted Flight Environment)

handling complex mathematical constraints

coral solver

target application of solver: programs that
–  use floating-point arithmetic
–  call math functions

output: {x1=100.0, x2=98.48…, x3=3.08…E-11, …}

TSAFE example

input: sqrt(pow(((x1 + (e1 * (cos(x4) – …

approach: combine meta-heuristic search and interval solving
[NFM’11, ICST’12]

meta-heuristic search

explores candidate solutions
–  start with random solutions
–  refine candidate set based on fitness function
–  inherently incomplete

local search
–  uses one single candidate solution
–  e.g., Alternating Variable Method (AVM),

hill climbing, simulated annealing, etc.

global search
–  uses several candidate solutions
–  e.g., Particle Swarm Optimization (PSO),

genetic algorithms, etc.

interval solving

another method for constraint solving

output: {x1=[99.9…, 100.0], x2=[99.9…, 100.0], …}, …

input: sqrt(pow(((x1 + (e1 * (cos(x4) – …

interval

intervals may not contain solutions!

our approach: combine techniques

+  good for finding exact
solutions in large search
spaces

-‐  may get lost in local
maxima

+  good for computing parts
of solution space

-‐  does not compute
solutions

meta-heuristic search interval solving

seed meta-heuristic search
with inputs drawn from intervals

(intuition: better initial states)

evaluation

publicly available applications from the aerospace domain

TSAFE units

Subject # constraints # conjuncts # functions

Apollo Autopilot 800 39 3

Collision Detection (CDx) 800 63 6

Conflict Probe 33 7 5

Turn Logic 329 3 20

evaluated CORAL configurations

meta-heuristic search alone
–  AVM
–  PSO (previously found it better than GA)

interval solving w/ RealPaver (RP) alone
–  RP+RAN (choose random values from interval)

combinations of IS with global and local search
–  RP+AVM – optimistic vs RV reported intervals
–  RP+PSO – not so optimistic

results for Apollo and CDx

Apollo CDx

conclusions for CORAL

combination solved more constraints than meta-heuristic search or
interval solving alone

–  both global and local search help interval solving
–  complementary: should be run together in parallel

http://pan.cin.ufpe.br/coral

void test(int x, int y) {
 if (x > 0) {
 if (y == hash(x))
 S0;
 else
 S1;
 if (x > 3 && y > 10)
 S3;
 else
 S4;
 }
}

S0, S1, S3, S4 =
statements we wish to cover

hash is native or can not be
handled by decision procedure

handling native code

hash is native or can not be
handled by decision procedure

S0, S1, S3, S4 =
statements we wish to cover

symbolic execution
can not handle it!

solution:
provide “model” for hash
or
mixed concrete-symbolic solving
[ISSTA’11]

void test(int x, int y) {
 if (x > 0) {
 if (y == hash(x))
 S0;
 else
 S1;
 if (x > 3 && y > 10)
 S3;
 else
 S4;
 }
}

handling native code

mixed concrete-symbolic solving

use function symbols for external library calls

split path condition PC into:
simplePC – solvable constraints
complexPC – non-linear constraints with function symbols

solve simplePC
use obtained solutions to simplify complexPC

check the result again for satisfiability

similar to DART

 assume hash(x) = 10 *x:
PC: X>3 ∧ Y>10 ∧ Y=hash(X)

 simplePC complexPC

solve simplePC
use solution X=4 to compute h(4)=40
simplify complexPC: Y=40
solve again

 simplified PC: X>3 ∧ Y>10 ∧ Y=40 satisfiable!

mixed concrete-symbolic solving

void test(int x, int y) {
 if (x > 0) {
 if (y == hash(x))
 S0;
 else
 S1;
 if (x > 3 && y > 10)
 S3;
 else
 S4;
 }
}

native int hash(x) {
 return x*10;
}

symbolic execution

PC: true

PC: X>0 PC: X<=0

PC: X>0 &
 Y=hash(X) S0

PC: X>3 & Y>10 &
 Y=hash(X) S3

PC: X>0 & X<=3 &
 Y=hash(X) S4

…
solve X>0
get X=1
hash(1)=10
check X>0 &
 Y=10

solve X>3 & Y>10
get X=4
hash(4)=40
check X>3 & Y>10
 & Y=40

potential for unsoundness

test (int x, int y) {
 if (x>=0 && x>y && y == x*x)
 assert false;
 else
 …;
}

not reachable

PC: X>=0 & X > Y & Y = X*X S0

X=0, Y=-1 Y=0*0=0

X>=0 & X>Y Y = X*X simplePC complexPC Must add constraints
on the solutions back into
simplified PC

DART/Concolic
will diverge instead

X>=0 & X>Y & Y=0 & X=0

not sat!
is sat which implies
assert is reachable!

X>=0 & X>Y & Y=0 simplified PC

example

EXE results: stmt “S3” not covered DART results: path “S0;S4” not covered

Mixed concrete-symbolic solving: all paths covered Example

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

Predicted path “S0;S4”
!= path taken “S1;S4”

//hash(x)=10*x

void test(int x, int y) {
 if (x > 0) {
 if (y == hash(x))
 S0;
 else
 S1;
 if (x > 3 && y > 10)
 S3;
 else
 S4;
 }
}

native int hash(x) {
 return x*10;
}

test(1,0)

X > 0

X > 0 & Y != 10 S1

X>0 & Y!=10 & X<=3 S4

X>0 & Y!=10 & X>3

test(4,0)

X > 0

X > 0 & Y != 40 S1

X>0 & Y!=40 & X>3 &
Y<= 10 S4

running DART
X>0 & Y!=40 & X>3 & Y>10

test(4,11)

X > 0

 X > 0 & Y != 40 S1

X>0 & Y!=40 & X>3 &
Y>10 S3

X>0 & Y=40 & X>3 & Y>10

test(4,40)

X > 0

X > 0 & Y = 40 S0

X>0 & Y=40 & X>3 & Y>10 S3

X>0 & Y=40 & X<=3 & Y>10

test(1,40)

X > 0

X > 0 & Y != 10 S1

X>0 & Y!=10 & X<=3 S4

divergence!

aimed to get S0;S4
but reached S1;S4

both techniques incomplete

incomparable in power (see paper)

mixed concrete-symbolic solving can handle only “pure”, side-
effect free functions

 DART does not have the limitation; will likely diverge

see also “higher order test generation” – P. Godefroid [PLDI’11]

 uses combination of validity checking and un-interpreted functions
 generates tests from validity proofs
 implementation challenge

mixed concrete-symbolic solving vs dart

testing web applications – challenge
handling complex constraints involving strings and numerics

String s, q;
integer a, b;
s.equals(q) && s.startswith(“uvw”) && q.endswith(“xyz”) &&
s.length()<a && (a+b)<6 && b>0

unsatisfiable!

solving string constraints

solution – string solver
–  maintain separate constraint set for Integer/Boolean and Real
–  maintain separate constraint set for string variables – represented as

FSMs or regular expressions
–  pass learned constraints from one domain to another and iterate to fixed

point or time out

string solver – incorporated in SPF (thanks to Willem Visser …
still work in progress)
independent solution provided by Fujitsu

solving string constraints

Symbolic Execution

and Software Testing
Part 4

Corina Păsăreanu
CMU Silicon Valley/ NASA Ames Research Center

NATO International Summer School 2012,

Marktoberdorf, Germany

outline
Part 1
!   introduction: symbolic execution
!   symbolic pathfinder: symbolic

execution for Java bytecode
!   input data structures
!   multi-threading

Part 2
!   dynamic techniques
!   the DART algorithm
! concolic execution

Part 3
!   challenges
!   solving complex constraints

!   parallel and compositional
techniques

!   abstraction
!   symbolic execution with mixed

concrete-symbolic solving

Part 4
!   applications
!   current and future work

testing the Onboard Abort Executive (OAE)

prototype for CEV ascent abort handling being developed by
JSC GN&C

Inputs

Pick Highest Ranked Abort

Checks Flight Rules
to see if an abort must occur

Select Feasible Aborts

OAE Structure results

baseline
–  manual testing: time consuming (~1 week)
–  guided random testing could not cover all aborts

symbolic pathfinder
–  generates tests to cover all aborts and flight rules
–  total execution time is < 1 min
–  test cases: 151 (some combinations infeasible)
–  errors: 1 (flight rules broken but no abort picked)
–  found major bug in new version of OAE
–  flight Rules: 27 / 27 covered
–  aborts: 7 / 7 covered
–  size of input data: 27 values per test case

[ISSTA’08]

Orion orbits the moon
(Image Credit: Lockheed Martin)

generated test cases and constraints

test cases:
// Covers Rule: FR A_2_A_2_B_1: Low Pressure Oxodizer Turbopump speed limit exceeded
// Output: Abort:IBB
CaseNum 1;
CaseLine in.stage_speed=3621.0;
CaseTime 57.0-102.0;

// Covers Rule: FR A_2_A_2_A: Fuel injector pressure limit exceeded
// Output: Abort:IBB
CaseNum 3;
CaseLine in.stage_pres=4301.0;
CaseTime 57.0-102.0;
…

constraints:
 //Rule: FR A_2_A_1_A: stage1 engine chamber pressure limit exceeded Abort:IA

PC (~60 constraints):
in.geod_alt(9000) < 120000 && in.geod_alt(9000) < 38000 && in.geod_alt(9000) < 10000 &&
in.pres_rate(-2) >= -2 && in.pres_rate(-2) >= -15 &&
in.roll_rate(40) <= 50 && in.yaw_rate(31) <= 41 && in.pitch_rate(70) <= 100 && …

polyglot

large programs such as NASA Exploration
–  build multiple systems that interact via safety-critical protocols
–  designed with different Statechart variants
–  a unified verification framework needed

polyglot
–  modeling and analysis for multiple Statechart formalisms
–  captures interactions between components
–  formal semantics that captures the variants of Statecharts
–  applied to JPL’s MER arbiter, Ares-Orion communication

collaboration w/ Vanderbilt University and University of
Minnesota

[ISSTA’11,NFM’12]

Rhapsody

IMPORT

Simulink/Stateflow

Pluggable Semantics

Generic Execution Environment

UML Rhapsody

State machine model in Java

EXPORT

Symbolic PathFinder

Stateflow

Data interface

Modeling /
Intermediate Representation

Error Report

Systematic
Analysis

Sym Exe Tree

Test
Sequences

Constraint
Solving

polyglot

example

simplified model of the arbiter module
Mars Exploration Rover

–  3 Statecharts: 1 server, 2 clients
–  Server grants/denies/rescinds resources

example (cont’d)
server contains: 33 pseudo-states
(junctions), 15 atomic states, 2
orthogonal states and 58 transitions;
108 total elements

each user has 2 pseudostates, 4 atomic
states, 1 compound state and 9
transitions; 16 total elements

114

fault tolerant version of Ethernet protocol
used by NASA in space networks
assure reliable network communications.

developed PVS model of basic version of the
TTEthernet protocol

framework for translating models into Java
multi-threaded code

SPF analysis
- filtering of test cases to satisfy the various fault
hypothesis
- verification of fault-tolerant properties
- demonstrated test case generation for
TTEthernet’s Single Fault Hypothesis

[w/ NASA Langley]

Shown: Minimal configuration for testing
agreement in TTEthernet

test generation for ttethernet protocol

differential symbolic execution – NASA Langley

37

Vj

source

diff Vi Vj

common

Extended
Symbolic
Execution

Pre-computed
Summaries

Extended
Symbolic
Execution

Vi

Symbolic
Summary

Vj

Symbolic
Summary

DSE Step 1 DSE Step 2

Check
Equivalence

Generate
Deltas

Vi Vj

DSE Step 3

Vi Vj

Client
Analyses

Vi

source

Impact Analysis
Test Suite Evolution
Refactoring Assurance
Change Characterization
Selective Re-certification
...

Figure 3.1: DSE Methodology

3.1 Methodology

The DSE methodology performs an automated form of differential program anal-

ysis [53, 79]. It combines advances in symbolic execution [1, 29, 58, 75, 76] with

over-approximating abstract summaries of unchanged sections of code, to detect pro-

gram differences and precisely characterize the execution behaviors of one program

version relative to another. Informally, a program’s execution behavior refers to an

execution path and is represented by pairing a description of input values with the

effects of execution, i.e., the values computed for a given set of inputs. DSE is capable

of (a) demonstrating that two program versions are equivalent, or, if they are not,

(b) characterizing the behavioral differences between versions by identifying the sets

of inputs that cause a different effect.

The DSE methodology is performed in three main steps as illustrated in Figure 3.1.

Given two versions of a program, Vi and Vj, DSE first uses a light-weight static

analysis technique, e.g., source file or AST diff, to identify common code sequences,

i.e., sections of code which are unchanged between program versions. The goal of

this step is to reduce analysis cost by inferring common program behaviors using

computes logical difference between two program versions
uses loop and method summaries
[Person et al. FSE’08, Person et al PLDI’11]

memoized symbolic execution

stores symbolic execution tree for re-use
uses trie data structure

–  stores only the choices in the tree
–  maintained during successive symbolic execution runs

[ISSTA’12]

memoise – example

1 int compute (int curr,
 int thresh,
 int step) {
2  int delta = 0;
3  if(curr<thresh) {
4  delta = thresh-curr;
5  if((curr+step)<thresh)
6  return – delta;
7  else
8  return 0;
9  } else {
10  int counter=0;
11  while(curr>=thresh) {
12  curr=curr-step;
13  counter++;
14  }
15  return counter;
16  }
17  }

curr: S1, thresh: S2, step: S3
Path condition PC: true

… delta: 0

… PC: S1 < S2 … PC: S1 ≥ S2

… delta: S2-S1

… PC: S1 < S2 /\
 S1+S3<S2

… PC: S1 < S2 /\
 S1+S3 ≥ S2

… Return: -(S2-S1) … Return: 0

… counter: 0

… PC: S1 ≥ S2 /\
 S1 < S2

… PC: S1 ≥ S2 /\
 S1 ≥S2

… curr: S1–S3

… counter: 1

… PC: S1 ≥ S2 /\
 S1-S3<S2

… Return: 1

… PC: S1 ≥ S2 /\
 S1-S3 ≥ S2

… curr: S1–S3–S3

[2]

[3] [3]

[4]

[5] [5]

[6] [8]

[10]

[11] [11]

[12]

[13]

[11] [11]

[15] [12]

[13]

Unsat!

… counter: 2

[11] [11]

symbolic execution tree

memoise – example

3, 0, compute 3, 1, compute

5, 0, compute 5, 1, compute 11, 0, compute 11, 1, compute

11, 0, compute 11, 1, compute

Root
n1

n3

n2

n8

n5

n4 n7 n6

n9

curr: S1, thresh: S2, step: S3
Path condition PC: true

… delta: 0

… PC: S1 < S2 … PC: S1 ≥ S2

… delta: S2-S1

… PC: S1 < S2 /\
 S1+S3<S2

… PC: S1 < S2 /\
 S1+S3 ≥ S2

… Return: -(S2-S1) … Return: 0

… counter: 0

… PC: S1 ≥ S2 /\
 S1 < S2

… PC: S1 ≥ S2 /\
 S1 ≥S2

… curr: S1–S3

… counter: 1

… PC: S1 ≥ S2 /\
 S1-S3<S2

… Return: 1

… PC: S1 ≥ S2 /\
 S1-S3 ≥ S2

… curr: S1–S3–S3

[2]

[3] [3]

[4]

[5] [5]

[6] [8]

[10]

[11] [11]

[12]

[13]

[11] [11]

[15] [12]

[13]

Unsat!

… counter: 2

[11] [11]

symbolic execution tree memoised tree

applications

!   iterative deepening
–  perform repeated symbolic execution with increasing depth
–  re-use results from smaller depths when exploring paths at larger

depths

!   regression analysis
–  analyze successive versions of a program
–  change impact analysis to identify nodes impacted by program change
–  re-execute only the paths impacted by the change

!   heuristic guided symbolic execution
–  heuristic search of program paths, guided by the testing coverage

achieved so far
–  iterative deepening – at each iteration discover paths that may lead to

increased coverage
–  select only those paths in sub-sequent iterations

memoise

results – savings
!   time (2x improvement)
!   number of solver calls (up to 1000 less cals)
!   number of states explored (1 order of magnitude

improvement)

more applications
!   continuous testing
!   load balancing for parallel execution
!   partial symbolic execution
!   component certification

more enabled analyses

predictive testing [Majumdar & Sen ICSE’07]

!   predicts errors from correct traces
!   run an existing test suite
!   perform a “concolic” execution along concrete tests
!   check for assertion violations and other types of errors
!   the assertions that hold along a concrete execution do not

necessarily hold along the symbolic execution

robustness analysis [Majumdar & Saha RTSS’09]

!   checks whether small perturbations in inputs cause only small
changes in outputs

!   based on symbolic execution and non-linear optimization
!   computes maximum difference in program outputs over all

program paths when a program input is perturbed
!   generates a set of test vectors which demonstrate the worst-

case deviations in outputs for small deviations in inputs

load testing [Zhang et al. ASE’11]

!   validates whether system performance is acceptable under
peak conditions

!   symbolic execution used to compute values that induce load
!   iterative-deepening approach favors program paths associated

with a performance measure
!   generated test suites induce program response times and

memory consumption worse than compared alternatives

testing DB and GUI applications, security
many more …

1: d=d+1;
2: if (x > y)
3: return d / (x-y);
 else
4: return d / (y-x);

PC: X>Y

x: X, y: Y, d: D+1
PC: true

PC: X<=Y

PC: X>Y
return:
 (D+1)/(X-Y)

PC: X<=Y & Y-X!=0
return:
 (D+1)/(Y-X)

PC: X<=Y & Y-X=0
Division by zero!

Solve path conditions → test inputs

Method m:

Symbolic execution tree:

[2:] [2:]

[3:] [4:] [4:]

x: X, y: Y, d: D
Path condition PC: true

[1:]

a detailed example – “continuous” testing

auto-generated Junit tests

@Test public void t1() {
 m(1, 0, 1);
}
@Test public void t2() {
 m(0, 1, 1);
}
@Test public void t3() {
 m(1, 1, 1);
}

full path coverage

Pass ✔

Pass ✔

Fail ✗ PC: X<=Y & Y-X=0 ó X=Y

program repair and synthesis

add JML pre-condition:
@Requires(“x!=y)

add argument check in m:
if(x==y) throw new IllegalArgumentException(“requires: x!=y”)

add expected clause to test t3:
@Test(expected=ArithmeticException.class)
 public void t3() {
 m(1, 1, 1);
 }

will fix the error or produce more useful output
one can do more sophisticated program repairs.
see e.g. [ICSE’11 “Angelic Debugging”]

invariant generation

pre-condition:
 “x!=y”

post-condition:
 “\result==((x>y) ? (d+1)/(x-y) : (d+1)/(y-x))”

use inductive and machine learning techniques to generate loop invariants
see DySy [Csallner et al ICSE’08], also [SPIN’04]

Induction Step

Base Case

proving properties of programs

X = init;
while (C(X))
 X = B(X);
assert P(X);

Looping program:

Program execution:

while …
true

while …
true

while …
true

…
May be infinite …

How to reason about
infinite executions?

Has finite execution.
Easy to reason about!

Problem:
How do we come up with Inv?
Requires great user ingenuity.
Many techniques that try to come up with Inv automatically.

X = init;
assert Inv(X);
X = new symbolic values;
assume Inv(X);
if (C(X)) {
 X = B(X);
 assert Inv(X);
} else
 assert P(X);

Non-looping program:

Find loop
invariant Inv

symbolic execution and software testing

King [Comm. ACM 1976] , Clarke [IEEE TSE 1976]
tools, many open-source

–  NASA’s Symbolic (Java) Pathfinder
 http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

–  UIUC’s CUTE and jCUTE
 http://osl.cs.uiuc.edu/~ksen/cute

–  Stanford/Imperial KLEE
 http://klee.llvm.org/

–  UC Berkeley’s CREST and BitBlaze
 http://code.google.com/p/crest

–  Microsoft’s Pex, SAGE, YOGI, PREfix
 http://research.microsoft.com/en-us/projects/pex/
 http://research.microsoft.com/en-us/projects/yogi

–  IBM’s Apollo, Parasoft’s testing tools
–  Doron Peled’s PET tool [CAV 2000]
–  …

bibliography on symbolic execution (Saswat Anand):
http://sites.google.com/site/symexbib/

scalability
–  Pruning redundant paths [Boonstoppel et al, TACAS’08]
–  Heuristic search [Brunim & Sen, ASE’08] [Majumdar & Se, ICSE’07]
–  Parallel techniques [Siddiqui & Khurshid, ICSTE’10] [Staats & Pasareanu,

ISSTA’10]
–  Compositional techniques [Godefroid, POPL’07]
–  Incremental techniques [Person et al, PLDI’11]
–  Loop abstraction [Saxena et al ISSTA’09] [Godefroid ISSTA’11] [Strejček and

Trtík ISSTA’12]
complex non-linear mathematical constraints

–  Un-decidable or hard to solve
–  Heuristic solving [Lakhotia et al., ICTSS’10][Souza et al, NFM’11]

testing web applications and security problems
–  String constraints [Bjorner et al, 2009] …
–  Mixed numeric and string constraints [ISSTA’11] [Fujitsu]

not covered

–  Symbolic execution for formal verification [Coen-Porisini et al, ESEC/FSE’01], [Dillon,
ACM TOPLAS’90], [Harrison & Kemmerer’88]

–  Forward vs backward symbolic execution, precision issues …

challenges

current and future work for spf

!   memoization [ISSTA’12 – Yang et al.]
–  saves symbolic execution tree for re-use

!   probabilistic symbolic execution [ISSTA’12 – Dwyer et al.]
–  uses model counting for PCs to compute the probability of program

statements

!   new “green” constraint solver [FSE’12 – Visser et al.]
–  caches constraints for re-use

!   reliability analysis (w/ A. Filieri and W. Visser)
–  computes probability of success or failure based on probabilistic usage profile
–  handles loops, multi-threading, data structures

!   test case generation for Android apps
!   program specialization
!   multi-threading …

Thank you!

