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Goal: software reliability

Use software engineering 
methodologies to 
develop the code.

Use formal methods 
during code 
development
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What are formal methods?

Techniques for analyzing systems, based on 
some mathematics.

This does not mean that the user must be a 
mathematician (but here we study the 
math).



(Ambitious) Plan

 How to model (concurrent) systems?

 How to write a specification using temporal logic and 
automata on infinite words.

 How to translate TL to automata.

 How to check consistency between model and 
specification (model checking).

 The SPIN tool (you can us it!)

 Branching time model checking, BDD and CTL.
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Specification:
Informal, textual, visual

The value of x will be between 1 and 5, 
until some point where it will become 7. 
In any case it will never be negative.

(1<=x<=5 U (x=7/\ [] x>=0))

1<=x<=5 X=7

X>=0
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Modeling Software Systems 
for Analysis

(Book: Chapter 4)
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Modelling and specification for 
verification and validation

 How to specify what the software is 
supposed to do?

 How to model it in a way that allows us 
to check it?
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Systems of interest

 Sequential systems.

 Concurrent systems (multi-threaded).

1. Distributive systems.

2. Reactive systems.

3. Embedded systems 
(software + hardware).
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Sequential systems.

 Perform some computational task.

 Have some initial condition, e.g.,
0in A[i] integer.

 Have some final assertion, e.g.,
0in-1 A[i]A[i+1].
(What is the problem with this spec?)

 Are supposed to terminate.
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Concurrent Systems

Involve several computation agents.

Termination may indicate an abnormal 
event (interrupt, strike).

May exploit diverse computational power.

May involve remote components.

May interact with users (Reactive).

May involve hardware components 
(Embedded).
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Problems in modeling systems

 Representing concurrency:
- Allow one transition at a time, or
- Allow coinciding transitions.

 Granularity of transitions.

 Assignments and checks?

 Application of methods?

 Global (all the system) or local (one 
thread at a time) states.
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Modeling.
The states based model.

 V={v0,v1,v2, …} - a set of variables, over some 
domain.

 p(v0, v1, …, vn) - a parametrized assertion, e.g., 

v0=v1+v2 /\ v3>v4.

 A state is an assignment of values to the program 
variables. For example: 
s=<v0=1,v1=3,v3=7,…,v18=2>

 For predicate (first order assertion) p:
p(s) is p under the assignment s.
Example:   p is x>y /\ y>z. s=<x=4, y=3, z=5>.
Then we have  4>3 /\ 3>5, which is false.
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State space

 The state space of a program is the set 
of all possible states for it.

 For example, if V={a, b, c} and the 
variables are over the naturals, then the 
state space includes: 
<a=0,b=0,c=0>,<a=1,b=0,c=0>,

<a=1,b=1,c=0>,<a=932,b=5609,c=6658>…
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Atomic Transitions

 Each atomic transition represents a 
small piece of code such that no smaller 
piece of code is observable.

 Is a:=a+1 atomic?

 In some systems, e.g., when a is a 
register and the transition is executed 
using an inc command.
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Non atomicity

 Execute the 
following when a=0 
in two concurrent 
processes:

 P1:a=a+1

 P2:a=a+1

 Result: a=2.

 Is this always the 
case?

 Consider the actual 
translation:

P1:load R1,a

inc R1

store R1,a

P2:load R2,a

inc R2

store R2,a

 a may be also 1.
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Scenario

P1:load R1,a

inc R1

store R1,a

P2:load R2,a

inc R2

store R2,a

a=0

R1=0

R2=0

R1=1

R2=1

a=1

a=1
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Representing transitions

 Each transition has two parts:

 The enabling condition: a predicate.

 The transformation: a multiple assignment.

 For example:
a>b  (c,d ):=(d,c )
This transition can be executed in states 
where a>b. The result of executing it is
switching the value of c with d.
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Initial condition

 A predicate I.

 The program can 
start from states s
such that I (s)
holds.

 For example:
I (s)=a >b /\ b >c.
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A transition system

 A (finite) set of variables V over some 
domain.

 A set of states S.

 A (finite) set of transitions T, each 
transition e t has
 an enabling condition e, and

 a transformation t.

 An initial condition I.
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Example

 V={a, b, c, d, e}.

 S: all assignments of natural numbers 

for variables in V.

 T={c >0(c,e):=(c -1,e +1),  
d >0(d,e):=(d -1,e +1)}

 I: c =a /\ d =b /\ e =0

 What does this transition system do?
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The interleaving model

 An execution is a maximal finite or infinite 
sequence of states s0, s1, s2, …
That is: finite if nothing is enabled from the last 
state.

 The first state s0 satisfies the initial 
condition, I.e., I (s0).

 Moving from one state si to its successor 
si+1 is by executing a transition et:
 e (si), i.e., si satisfies e.

 si+1 is obtained by applying t to si.
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Example:

 s0=<a=2, b=1, c=2, d=1, e=0> 

 s1=<a=2, b=1, c=1, d=1, e=1>

 s2=<a=2, b=1, c=1, d=0, e=2>

 s3=<a=2, b=1 ,c=0, d=0, e=3>

T={c>0(c,e):=(c -1,e +1),  

d>0(d,e):=(d-1,e+1)}

I: c=a /\ d=b /\ e=0
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L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0:=NC0
T1:PC0=NC0/\Turn=0

PC0:=CR0
T2:PC0=CR0

(PC0,Turn):=(L0,1)
T3:PC1=L1PC1=NC1
T4:PC1=NC1/\Turn=1

PC1:=CR1
T5:PC1=CR1

(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

The transitions

Is this the only reasonable way to model this program?
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The state graph:Successor relation 
between reachable states.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1T0 T0T3 T3

T1 T4
T3

T0 T3

T0

T0 T4T1 T3

T2

T2

T5

T5
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Some important points

 Reachable states: obtained from an initial state 
through a sequence of enabled transitions.

 Executions: the set of maximal paths (finite or 
terminating in a node where nothing is 
enabled).

 Nondeterministic choice: when more than a 
single transition is enabled at a given state. We 
have a nondeterministic choice when at least 
one node at the state graph has more than one 
successor.
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Always ¬(PC0=CR0/\PC1=CR1)
(Mutual exclusion)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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Always if Turn=0 then at 
some point Turn=1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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Always if Turn=0 then at 
some point Turn=1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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Interleaving semantics:
Execute one transition at a time.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=1
L0,CR1

Turn=1
L0,NC1

Need to check the property

for every possible interleaving!
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Interleaving semantics

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=1
L0,CR1

Turn=1
L0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1
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L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0:=NC0

T1:PC0=NC0/\Turn=0PC0:=CR0

T1’:PC0=NC0/\Turn=1PC0:=NC0

T2:PC0=CR0(PC0,Turn):=(L0,1)

T3:PC1==L1PC1=NC1

T4:PC1=NC1/\Turn=1PC1:=CR1

T4’:PC1=NC1/\Turn=0PC1:=NC1

T5:PC1=CR1(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

Busy waiting
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Always when Turn=0 then 
at some point Turn=1

Now it does not hold!

(Red subgraph generates a counterexample execution.)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1T4’ T1’
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Combinatorial explosion

V1:=1

V1:=3

V1:=2

Vn:=1

Vn:=3

Vn:=2
…

How many states?
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Global states

3n  states

v1=1,v2=1…vn=1

v1=2,v2=1…vn=1 v1=1,v2=1…vn=2…

v1=3,v2=1…vn=1 …

…

v1=1,v2=1…vn=3
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Specification Formalisms

(Book: Chapter 5)
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Properties of formalisms

 Formal. Unique interpretation.
 Intuitive. Simple to understand (visual).
 Succinct. Spec. of reasonable size.
 Effective.

 Check that there are no contradictions.
 Check that the spec. is implementable.
 Check that the implementation satisfies spec.

 Expressive.
 May be used to generate initial code.
Specifying the implementation or its properties?
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Temporal logic

 Dynamic, speaks about several “worlds” 
and the relation between them. 

 Our “worlds” are the states in an 
execution.

 There is a linear relation between them, 
each two sequences in our execution 
are ordered.

 Interpretation: over an execution, 
later over all executions.
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LTL: Syntax

 ::= () | ¬ | /\  \/ U
 |O  | p

“box”, “always”, “forever”

“diamond”, “eventually”, “sometimes”

O “nexttime”

U“until”

Propositions p, q, r, … Each represents some 
state property (x>y+1, z=t, at_CR, etc.)
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Semantics over suffixes of execution





O 

U



    








…

…

…

…
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Can discard some operators

 Instead of <>p, write true U p.

 Instead of []p, we can write ¬(<>¬p),
or ¬(true U ¬p).
Because []p=¬¬[]p.
¬[]p means it is not true that p holds 
forever, or at some point ¬p holds or 
<>¬p.
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Combinations

 []<>p “p will happen infinitely often”

 <>[]p “p will happen from some point 
forever”.

 ([]<>p)  ([]<>q)  “If p happens 

infinitely often, then q also happens 
infinitely often”.
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Some relations:

 [](/\)=([])/\([])

 But <>(/\)(<>)/\(<>)

 <>(\/)=(<>)\/(<>)

 But [](\/)([])\/([])














…

…
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What about

 ([]<>)/\([]<>)=[]<>(/\)?

 ([]<>)\/([]<>)=[]<>(\/)?

 (<>[])/\(<>[])=<>[](/\)?

 (<>[])\/(<>[])=<>[](\/)?

No, just 

Yes!!!

Yes!!!

No, just 
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Formal semantic definition

 Let  be a sequence s0 s1 s2 …

 Let i be a suffix of : si si+1 si+2 … (0 = )

 i |= p, where p a proposition, if si|=p.

 i |= /\ if i |=  and i |= .

 i |= \/ if i |=  or i |= .

 i |= ¬ if it is not the case that i |= .

 i |= <> if for some ji, j |= . 

 i |= [] if for each ji, j |= .

 i |= U  if for some ji, j|=.
and for each ik<j, k |=.

 How to define i |= O?
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Then we interpret:

 For a state:
s|=p as in propositional logic.

 For an execution:
|= is interpreted over a sequence, as 
in previous slide.

 For a system/program:
P|= holds if |= for every sequence 
 of P.
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Spring Example

s1 s3s2

pull

release

release

extended
malfunction

extended

r0 = s1 s2 s1 s2 s1 s2 s1 …

r1 = s1 s2 s3 s3 s3 s3 s3 …

r2 = s1 s2 s1 s2 s3 s3 s3 …

…
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LTL satisfaction by a single 
sequence

malfunction

s1 s3s2pull

release

release

extended extended

r2 = s1 s2 s1 s2 s3 s3 s3 …

r2 |= extended  ??

r2 |= O extended ??

r2 |= O O extended ??

r2 |= <> extended ??

r2 |= [] extended ??

r2 |= <>[] extended ??

r2 |= ¬ <>[] extended ??

r2 |= (¬extended) U malfunction ??

r2 |= [](¬extended->O extended) ??
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LTL satisfaction by a system

malfunction

s1 s3s2pull

release

release

extended extended

P |= extended  ??

P |= O extended ??

P |= O O extended ??

P |= <> extended ??

P|= [] extended ??

P |= <>[] extended ??

P |= ¬ <>[] extended ??

P |= (¬extended) U malfunction ??

P |= [](¬extended->O extended) ??



51

More specifications

 [] (PC0=NC0  <> PC0=CR0)

 [] (PC0=NC0 U Turn=0)

 Try at home:
- The processes alternate in entering 
their critical sections.
- Each process enters its critical section 
infinitely often.
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Proof system

 ¬<>p<-->[]¬p

 [](pq)([]p[]q)

 []p(p/\O[]p)

 O¬p<-->¬Op

 [](pOp)(p[]p)

 (pUq)<-->(q\/(p/\O(pUq)))

 (pUq)<>q

 + propositional logic 
axiomatization.

 + proof rule:
_p_
[]p

 But, there is actually 
no need to do  
proofs!! Use 
algorithms instead
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Traffic light example

Green  Yellow  Red

Always has exactly one light:

[](¬(gr/\ye)/\¬(ye/\re)/\¬(re/\gr)/\(gr\/ye\/re))

Correct change of color:

[]((grgrU ye)/\(yeyeU re)/\(rereU gr))
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Another kind of traffic light

GreenYellowRedYellow

First attempt:

[]((gr\/re(gr\/re) U ye)\/(ye ye U (gr\/re)))

Correct specification:

[](  (gr(gr U (ye /\ ( ye U re ))))

/\(re(re U (ye /\ ( ye U gr ))))

/\(ye(ye U (gr \/ re))))
Needed only when we
can start with yellow
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Automata over finite words

 A=<S, S, , I, F>

 S (finite) - the alphabet.
 S (finite) - the states.
   S x S x S - the transition relation.
 I  S - the starting states.
 F  S - the accepting states.

a

a

b

bs0 s1
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The transition relation

 (s0, a, s0)

 (s0, b, s1)

 (s1, a, s0)

 (s1, b, s1)

a

a

b

bs0 s1
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A run over a word

 A word over S, e.g., abaab.
 A sequence of states, e.g. s0 s0 s1 s0 s0 s1.
 Starts with an initial state.
 Follows the transition relation (si, ci , si+1).
 Accepting if ends at accepting state.

a

a

b

bs0 s1
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The language of an 
automaton

 The words that are accepted by the 
automaton.

 Includes aabbba, abbbba.
 Does not include abab, abbb.
 What is the language?

a

a

b

bs0 s1
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Nondeterministic automaton

 Transitions: (s0,a ,s0), (s0,b ,s0), 
(s0,a ,s1),(s1,a ,s1).

 What is the language of this 
automaton?

a,b
a

as0
s1
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Equivalent deterministic automaton

b

a

as0 s1

b

a,b a
as0 s1
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Automata over infinite words

 Similar definition.

 Runs on infinite words over S.

 Accepts when an accepting state occurs 
infinitely often in a run.

a

a

b

bs0 s1
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Automata over infinite words
(Büchi automata,-automata)

 Consider the word  abababab…

 There is a run    s0s0s1s0s1s0s1 …

 This run in accepting, since s0

appears infinitely many times.

a

a

b

bs0 s1
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Other runs

 For the word  bbbbb… the run is 
s0 s1 s1 s1 s1… and is not accepting.

 For the word   aaabbbbb …, the
run is s0 s0 s0 s0 s1 s1 s1 s1 …

 What is the run for ababbabbb …?

a

a

b

bs0 s1
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Nondeterministic automaton

 What is the language of this automaton?

 What is the LTL specification if 
b -- PC0=CR0, a =¬b?

•Can you find a deterministic automaton with same language?

•Can you prove there is no such deterministic automaton?

a,b
a

as0 s1
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No deterministic automaton 
for (a+b)*aω

 In a deterministic automaton there is one run for 
each word.

 After some sequence of a’s, i.e., aaa…a must reach 
some accepting state.

 Now add b, obtaining aaa…ab.
 After some more a’s, i.e., aaa…abaaa…a must reach 

some accepting state.
 Now add b, obtaining aaa…abaaa…ab.
 Continuing this way, one obtains a run that has 

infinitely many b’s but reaches an accepting state
(in a finite automaton, at least one would repeat) 
infinitely often.
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Specification using Automata

 Let each letter correspond to some propositional 
property.

 Example:     a -- P0 enters critical section,
b -- P0 does not enter section.

 []<>PC0=CR0

a

a

b

bs0 s1
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Mutual Exclusion

 a -- PC0=CR0/\PC1=CR1
 b -- ¬(PC0=CR0/\PC1=CR1)
 c -- true
 []¬(PC0=CR0/\PC1=CR1)

b a
cs0 s1
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L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0=NC0

T1:PC0=NC0/\Turn=0

PC0:=CR0

T2:PC0=CR0

(PC0,Turn):=(L0,1)

T3:PC1==L1PC1=NC1

T4:PC1=NC1/\Turn=1

PC1:=CR1

T5:PC1=CR1

(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

Apply now to our 
program:
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The state space

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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[]¬(PC0=CR0/\PC1=CR1)
(Mutual exclusion)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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[](Turn=0 <>Turn=1)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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[](Turn=0  <>Turn=1)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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Correctness condition

 We need to define a correctness 
condition for a model to satisfy a 
specification.

 Language of a model: L(Model)

 Language of a specification: L(Spec).

 We need: L(Model)  L(Spec).
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Correctness

All sequences

Sequences satisfying Spec

Program executions
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Incorrectness

All sequences

Sequences satisfying Spec

Program executions

Counter

examples
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Automatic Verification

(Book: Chapter 6)
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How can we check the model?

 The model is a graph.

 The specification should refer the the 
graph representation.

 Apply graph theory algorithms.
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What properties can we check?

 Invariant: a property that needs to 
hold in each state.

 Deadlock detection: can we reach a 
state where the program is blocked?

 Dead code: does the program have 
parts that are never executed.
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How to perform the checking?

 Apply a search strategy (Depth first 
search, Breadth first search).

 Check states/transitions during the 
search.

 If property does not hold, report 
counter example!
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If it is so good, why learn deductive 
verification methods?

 Model checking works for finite state* systems. 
Would not work with

 Unconstrained integers.

 Unbounded message queues.

 General data structures:

queues, trees, stacks…

 parametric algorithms and systems.

______________________________________

*  But new MC methods make use of decidable logic  
theories (SMT). 
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The state space explosion

 Need to represent the state space of a 
program in the computer memory.

 Each state can be as big as the entire 
memory!

 Many states:

 Each integer variable has 2^32 possibilities. 
Two such variables have 2^64 possibilities.

 In concurrent protocols, the number of states 
usually grows exponentially with the number of 
processes.
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If it is so constrained, is it of any use?

 Many protocols are finite state.

 Many programs or procedure are finite state 
in nature. Can use abstraction techniques.

 Sometimes it is possible to decompose a 
program, and prove part of it by model 
checking and part by theorem proving.

 Many techniques for reducing the state space 
explosion.
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How can we check properties with DFS?

 Invariants: check that all reachable states
satisfy the invariant property. If not, show
a path from an initial state to a bad state.

 Deadlocks: check whether a state where no
process can continue is reached.

 Dead code: as you progress with the DFS, 
mark all the transitions that are executed at 
least once.
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¬(PC0=CR0/\PC1=CR1) is 

an invariant!

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1
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Turn=0
L0,L1

Turn=1
L0,L1

init

•Propositions are attached to incoming nodes.

•All nodes are accepting.

Turn=1
L0,L1

Turn=0
L0,L1
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Correctness condition

 We want to find a correctness condition 
for a model to satisfy a specification.

 Language of a model: L(Model)

 Language of a specification: L(Spec).

 We need: L(Model)  L(Spec).
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Correctness

All sequences

Sequences satisfying Spec

Program executions
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How to prove correctness?

 Show that L(Model)  L(Spec).

 Equivalently:              ______
Show that L(Model)  L(Spec) = Ø.

 Also: can obtain Spec by translating 
from LTL!



89

What do we need to know?

 How to intersect two automata?

 How to complement an automaton?

 How to translate from LTL to an 
automaton?
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Intersecting M1=(S1,S,T1,I1,A1) 
and M2=(S2,S,T2,I2,S2) 

 Run the two automata in parallel.

 Each state is a pair of states: S1 x S2

 Initial states are pairs of initials: I1 x I2

 Acceptance depends on first 
component: A1 x S2

 Conforms with transition relation:
(x1,y1)-a->(x2,y2) when
x1-a->x2 and y1-a->y2.
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Example (all states of second 

automaton accepting!)

a

b

ct0 t1

a

a

b,c

b,cs0 s1

States: (s0,t0), (s0,t1), (s1,t0), (s1,t1).

Accepting: (s0,t0), (s0,t1). Initial: (s0,t0).
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a

b

ct0 t1

a

a

b,c

b,cs0 s1

s0,t0

s0,t1

s1,t1

s1,t0b

b

a

c

a

c
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More complicated when A2S2

a

b

ct0 t1

a

a

b,c

b,cs0 s1

Should we have acceptance when both 
components accepting? I.e., {(s0,t1)}?

No, consider (ba)

It should be accepted, but never passes that state.

s0,t0

s1,t1

b a

c
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More complicated when A2S2

a

b

ct0 t1

a

a

b,c
b,cs0 s1

Should we have acceptance when at least one 
components is accepting? I.e., {(s0,t0),(s0,t1),(s1,t1)}?
No, consider b c

It should not be accepted, but here will loop through 
(s1,t1)

s0,t0

s1,t1

b

c

a
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Intersection - general case

q0 q2

q3q1

q0,q3 q1,q3q1,q2

a a, c

c

c, bb

c

c

b

a
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Version 0: to catch accepting state q0

Version 1: to catch accepting state q2

q0,q3 q1,q3q1,q2

q0,q3 q1,q3q1,q2

Move when see accepting of left (q0) Move when see accepting of right (q2)

Version 0

Version 1

c

c

c

c

b

a

b

a
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Version 0: to catch accepting state q0

Version 1: to catch accepting state q2

q0,q3 q1,q3q1,q2

q0,q3 q1,q3q1,q2

Move when see accepting of left (q0) Move when see accepting of right (q2)

Version 0

Version 1

c

c

c

c

b

a

b

a
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Make an accepting state in one of the 
version according to a component 
accepting state

q0,q3,0 q1,q3,0q1,q2,0

q0,q3,1 q1,q3 ,1q1,q2 ,1

Version 1

Version 0

c

c

c

c

b

ab

a



99

How to check for emptiness?

s0,t0

s0,t1

s1,t1

b

a

c

a

c
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Emptiness...

Need to check if there exists an accepting 
run (passes through an accepting state 
infinitely often).
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Strongly Connected 
Component (SCC)

A set of states with a path between each 
pair of them.

Can use Tarjan’s DFS algorithm for finding 
maximal SCC’s.
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Finding accepting runs

If there is an accepting run, then at least one accepting state 
repeats on it forever. 

Look at a suffix of this run where all the states appear infinitely 
often.

These states form a strongly connected component on the 
automaton graph, including an accepting state.

Find a component like that and form an accepting cycle including 
the accepting state.
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Equivalently...

 A strongly connected component: a set 
of nodes where each node is reachable 
by a path from each other node. Find a 
reachable strongly connected 
component with an accepting node.
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How to complement?

 Complementation is hard!

 Can ask for the negated property (the 
sequences that should never occur).

 Can translate from LTL formula  to 
automaton A, and complement A. But:
can translate ¬ into an automaton 
directly!
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Translating from logic to 
automata

(Book: Chapter 6)
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Why translating?

 Want to write the specification in some 
logic.

 Want model-checking tools to be able 
to check the specification automatically.
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Generalized Büchi automata

 Acceptance condition F is a set
F={f1 , f2 , … , fn } where each fi is a set 
of states.

 To accept, a run needs to pass infinitely 
often through a state from every set fi .
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Translating into simple Büchi 
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

a

b

a
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Translating into simple Büchi 
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

b

a
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Translating into simple Büchi 
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

a

b

a
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Preprocessing

 Convert into normal form, where negation 
only applies to propositional variables.

 ¬[] becomes  <>¬.

 ¬<> becomes  [] ¬.

 What about ¬ ( U )?  

 Define operator R such that
¬ (  U ) = (¬) R (¬),

¬ (  R ) = (¬) U (¬).
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Semantics of pR q

p

qqq qq qq

q

qq

q qqq

¬p¬p¬p

¬p ¬p ¬p ¬p ¬p ¬p ¬p ¬p¬p

¬p
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 Replace ¬true by false, and ¬false by 
true.

 Replace ¬ ( \/ ) by (¬) /\ (¬) and
¬ ( /\ ) by (¬) \/ (¬) 



114

Eliminate implications, <>, []

 Replace  ->  by (¬ ) \/ .

 Replace <> by (true U ).

 Replace [] by (false R ).
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Example

 Translate ( []<>P )  ( []<>Q )

 Eliminate implication ¬( []<>P ) \/ ( []<>Q )

 Eliminate [], <>:
¬( false R ( true U P ) ) \/ ( false R ( true U Q ) )

 Push negation inwards:
(true U (false R ¬ P ) ) \/ ( false R ( true U Q ) )
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The data structure

Incoming

New Old

NextName
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The main idea

 U  =  \/ (  /\ O (  U  ) )

 R  =  /\ (  \/ O (  R  ) )

This separates the formulas into two 
parts: one holds in the current state, 
and the other in the next state.
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How to translate?

 Take one formula from “New” and add 
it to “Old”.

 According to the formula, either

 Split the current node into two (or
characteristics), or

 Evolve the node into a new version (and
characteristics).
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Splitting

Incoming

New Old

Next

Incoming

New Old

Next

Incoming

New Old

Next

Copy incoming 

edges, update 

other field.
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Evolving

Incoming

New Old

Next

Incoming

New Old

Next

Copy incoming 

edges, update 

other field.
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Possible cases:

  \/ , split:

 Add  to New.

 Add  to New.

  /\ , evolve:

 Add  to New.

 O , evolve:

 Add  to Next.
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More cases:

  U  , split: 

 Add  to New, add U  to Next.

 Add  to New.

[ Because U  =  \/ (  /\ O (U  ) ). ]

  R  , split:

 Add  to New.

 Add  to New,  R  to Next.

[ Because  R  =  /\ (  \/ O  ( R  ) )=

( /\ ) \/ ( /\ O  ( R  ) ). ]
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How to start?

Incoming

New Old

Next

init

aU(bUc)
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Incoming

init

aU(bUc)

Incoming Incoming

aU(bUc)aU(bUc) bUc

aU(bUc)

a

init init
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Incoming

aU(bUc)bUc

init
init

Incoming Incoming

aU(bUc)aU(bUc) c

(bUc)

b
bUc bUc
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When to stop splitting?

 When “New” is empty.

 Then compare  against a list of existing nodes 
“Nodes”:

 If such a with same “Old”, “Next” exists,
just add the incoming edges of the new version
to the old one.

 Otherwise, add the node to “Nodes”. Generate a 
successor with “New” set to “Next” of father.
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Incoming

a,aU(bUc)

aU(bUc)

init

Incoming

aU(bUc)

Copy Next field to 

New field of the 

successor, and making 

an edge to the new 

successor.

Start 

evolving/splitting 

successor

When a node is added to “Nodes”…
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When there are no pending 
nodes/successors to process

Each node in “Nodes” 
become a state in the 
automaton. It is 
labeled by the 
propositions/negated 
propositions in the 
“old” field.

Successor relationship 
according to the 
“incoming” field.

Incoming

New Old

Next

X

Node Y

a, b, ¬c
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The resulted nodes.

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc
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a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

Initial nodes: those
with “init” edge in “incoming”
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Acceptance conditions: guaranteeing that for 
each subformula U ,  eventually holds

 The successor relation only guarantees that 
either  holds now, or is delayed. 

 Use “generalized Buchi automata”, where
there are several acceptance sets f1, f2, …, fn, 
and each accepted infinite sequence must 
include at least one state from each set 
infinitely often.

 Each set corresponds to a subformula of form 
U . Guarantees that it is never the case 
that  is delayed forever.
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Accepting w.r.t. bU c

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

All nodes with c, or without bUc.
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Acceptance w.r.t. aU (bU c)

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

All nodes with bUc or without aU(bUc).
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a b c

b c

The automaton (without 
the accepting conditions)

Init

a

a

b

b

b

b
c

c
c

c
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The SPIN System
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What is SPIN?

 Model-checker.

 Based on automata theory.

 Allows LTL or automata specification

 Efficient (on-the-fly model checking, 
partial order reduction).

 Developed in Bell Laboratories.
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Documentation

Paper: The model checker SPIN,
G.J. Holzmann, IEEE Transactions 
on Software Engineering, Vol 23, 
279-295.

Web: http://www.spinroot.com
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The language of SPIN

 The expressions are from C.

 The communication is from CSP.

 The constructs are from Dijkstra’s 
Guarded Command.
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Expressions

 Arithmetic: +, -, *, /, %

 Comparison: >, >=, <, <=, ==, !=

 Boolean: &&, ||, !

 Assignment:  =

 Increment/decrement: ++, --



140

Declaration

 byte name1, name2=4, name3;

 bit b1,b2,b3;

 short s1,s2;

 int arr1[5];
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Message types and channels

 mtype = {OK, READY, ACK}

 mtype Mvar = ACK

 chan Ng=[2] of {byte, byte, mtype},
Next=[0] of {byte}

Ng has a buffer of 2, each message consists of two 
bytes and an enumerable type (mtype).
Next is used with handshake message passing.
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Sending and receiving a 
message

Channel declaration:

 chan qname=[3] of {mtype, byte, byte}
In sender:

 qname!tag3(expr1, expr2)
or equivalently:

qname!tag3, expr1, expr2
In Receiver:

 qname?tag3(var1,var2)
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Defining an array of channels

Channel declaration:

 chan qname=[3] of {mtype, byte, byte}
defines a channel with buffer size 3.

 chan comm[5]=[0] of {byte, byte}
defines an array of channels (indexed 0 to 4. 
Communication is synchronous (handshaking), 
meaning that the sender waits for the receiver.
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Condition

if

:: x%2==1 -> z=z*y; x--

:: x%2==0 -> y=y*y; x=x/2

fi

If more than one guard is enabled: a nondeterministic 
choice.

If no guard is enabled: the process waits (until a guard 
becomes enabled).
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Looping

do

:: x>y -> x=x-y

:: y>x -> y=y-x

:: else break

od;

Normal way to terminate a loop: with break. (or goto).

As in condition, we may have a nondeterministic loop or 
have to wait.
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Processes

Definition of a process:

proctype prname (byte Id; chan Comm)

{   

statements

}

Activation of a process:

run prname (7, Con[1]);
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init process is the root of 
activating all others

init {   statements }

init {byte I=0;

atomic{do

::I<10 -> run prname(I, chan[I]);  
I=I+1 

::I=10 -> break;

od}}

atomic allows performing several actions as one 
atomic step.
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Exmaples of Mutual exclusion

Reference:

A. Ben-Ari, Principles of Concurrent and 
Distributed Programs, Prentice-Hall 
1990.
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General structure of mutual 
exclusion algorithm\

loop

Non_Critical_Section
;

TR:Pre_Protocol;

CR:Critical_Section;

Post_protocol;

end loop;

Propositions:

inCRi, inTRi.
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Properties

loop

Non_Critical_Section
;

TR:Pre_Protocol;

CR:Critical_Section;

Post_protocol;

end loop;

Assumption:

~<>[]inCRi

Requirements:

[]~(inCR0/\inCR1)

[](inTRi<>inCRi)

Not assuming:

[]<>inTRi
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Turn:bit:=1;

task P0 is

begin

loop

Non_Critical_Sec;

Wait Turn=0;

Critical_Sec;

Turn:=1;

end loop

end P0.

task P1 is

begin

loop

Non_Critical_Sec;

Wait Turn=1;

Critical_Sec;

Turn:=0;

end loop

end P1.
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Translating into SPIN

#define  critical  (incrit[0] ||incrit[1])

byte turn=0, incrit[2]=0;

proctype P (bool id)

{ do

:: 1 ->

do

:: 1 -> skip

:: 1 -> break

od;

try:if

::turn==id -> skip

fi;

cr:incrit[id]=1;

incrit[id]=0;

turn=1-turn

od}

init { atomic{

run P(0);  run P(1) } }
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Running SPIN

 Can download and implement (for free) 
using www.spinroot.com

 Available in our system.

 Graphical interface: xspin

http://www.spinroot.com/
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Dekker’s 
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;
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Project

 Model in Spin

 Specify properties

 Do model checking

 Can this work without fairness?

 What to do with fairness?
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Modeling issues

Book: chapters 4.12, 5.4, 8.4, 10.1
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Fairness

(Book: Chapter 4.12, 8.3, 8.4)
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Dekker’s 
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;
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Dekker’s 
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

c1=c2=0,
turn=1



160

Dekker’s 
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

c1=c2=0,
turn=1
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Dekker’s 
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

P1 waits for P2 to set c2 to 1 again.
Since turn=1 (priority for P1), P2 is 
ready to do that. But never gets the 
chance, since P1 is constantly active 
checking c2 in its while loop.

c1=c2=0,
turn=1
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0:START P1

11:c1:=1

12:true

13:end2:c1:=0

8:c2=0?

7:turn=2?

6:c1:=0

3:c1:=1

11:turn:=2

10:c1:=1

9:critical-1

4:no-op

5:turn=2?

no

no

no

noyes

yes

yes

yes

0:START P2

11:c2:=1

12:true

13:end2:c2:=0

8:c1=0?

7:turn=1?

6:c2:=0

3:c2:=1

11:turn:=1

10:c2:=1

9:critical-2

4:no-op

5:turn=1?

no

no

no

noyes

yes

yes

yes

Initially:

turn=1
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What went wrong?

 The execution is unfair  to P2. It 
is not allowed a chance to 
execute.

 Such an execution is due to the 
interleaving model (just picking 
an enabled transition to execute 
next).

 If it did, it would continue and 
set c2 to 0, which would allow 
P1 to progress.

 Fairness = excluding some of 
the executions in the 
interleaving model, which do 
not correspond to actual 
behavior of the system.

while c1=0 do
begin

if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
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Recall:
The interleaving model

 An execution is a finite or infinite sequence of states s0, s1, s2, 
…

 The initial state satisfies the initial condition, I.e., I (s0).

 Moving from one state si to si+1 is by executing a transition 
et:

 e(si), I.e., si satisfies e.

 si+1 is obtained by applying t to si.

Now: consider only “fair” executions. Fairness constrains 
sequences that are considered to be executions.

Fair 
executions

Sequences
Executions
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Some fairness definitions

 Weak transition fairness:
It cannot happen that a transition is enabled indefinitely, but is 
never executed.

 Weak process fairness: 
It cannot happen that a process is enabled indefinitely, but non 
of its transitions is ever executed

 Strong transition fairness:
If a transition is infinitely often enabled, it will get executed.

 Strong process fairness:
If at least one transition of a process is infinitely often enabled, 
a transition of this process will be executed.
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Example

P1::x=1 P2: do
:: y==0 ->

if
:: true
:: x==1 -> y=1
fi

od

Initially: x=0; y=0;

In order for the loop to 
terminate (in a deadlock !) 
we need P1 to execute the 
assignment. But P1 may 
never execute, since P2 is 
in a loop executing true. 
Consequently, x==1 never 
holds, and y is never 
assigned a 1.

pc1=l0(pc1,x):=(l1,1)  /* x=1 */

pc2=r0/\y=0pc2=r1    /* y==0*/

pc2=r1pc2=r0            /* true */

pc2=r1/\x=1(pc2,y):=(r0,1)
/* x==1  y:=1 */
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Weak transition fairness

P1::x=1
P2: do

:: y==0 ->
if
:: true
:: x==1 -> y=1
fi

od

Initially: x=0; y=0;

Under weak transition 
fairness, P1 would assign 
1 to x, but  this does not 
guarantee that 1 is 
assigned to y and thus the 
P2 loop will terminates, 
since the transition for 
checking x==1 is not 
continuously enabled 
(program counter not 
always there).

Weak process fairness only 
guarantees P1 to execute, but P2 
can still choose the true guard.

Strong process fairness: 
same.
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Strong transition fairness

P1::x=1 P2: do

:: y==0 ->
if

:: true
:: x==1 -> y=1

fi
od

Initially: x=0; y=0;

Under strong transition
fairness, P1 would assign 
1 to x. If the execution was 
infinite, the transition 
checking x==1 was 
infinitely often enabled. 
Hence it would be 
eventually selected. Then 
assigning y=1, the main 
loop is not enabled 
anymore.
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Specifying fairness conditions

 Express properties over an alternating 
sequence of states and transitions:
s0 1 s1 1 s2 …

 Use transition predicates exec.
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Some fairness definitions

 Weak transition fairness:

/\ T (<>[]en []<>exec).

Equivalently: /\ T ¬<>[](en /\¬exec) 

 Weak process fairness: 

/\Pi (<>[]enPi []<>execPi )

 Strong transition fairness:

/\ T ([]<>en []<>exec )

 Strong process fairness:

/\Pi ([]<>enPi []<>execPi )

exec  is executed.

execPi    some transition 

of Pi is executed.

en  is enabled.

enPi    some transition of  

process Pi is enabled.

enPi = \/ Pi en

execPi = \/ Pi exec
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“Weaker fairness condition”

 A is weaker than B if B A.
(Means A has more executions 
than B.)

 Consider the executions L(A) 
and L(B). Then L(B)  L(A).

 If an execution is strong 
{process/transition} fair, then it 
is also weak 
{process/transition} fair.

 There are fewer strong 
{process,transition} fair 
executions.

Strong
transition
fair execs

Weak
process

fair execs

Weak
transition
fair execs

Strong
process

fair execs
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Fairness is an abstraction; no scheduler 
can guarantee exactly all fair executions!

Initially: x=0, y=0

P1::x=1
||

P2::do
:: x==0 -> y=y+1
:: x==1 -> break

od

x=0,y=0

x=0,y=1
x=1,y=0

x=1,y=1
x=0,y=2

x=1,y=2
Under fairness assumption (any of the four defined),
P1 will execute the assignment, and consequently, P2 will terminate. 
All executions are finite and there are infinitely many of them, and 
infinitely many states. 
Thus, an execution tree (the state space) will potentially look like the 
one on the right, but with infinitely many states, finite branching and 
only finite sequences. But according to König’s Lemma there is no 
such tree!
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Model Checking under fairness

 Instead of verifying that the program 
satisfies , verify it satisfies fair

 Problem: may be inefficient. Also 
fairness formula may involves special 
arrangement for specifying what exec 
means.

 May specialize model checking 
algorithm instead.
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Model Checking under Fairness

Specialize model checking. For weak process 
fairness: search for a reachable strongly 
connected component, where for each 
process P either

 it contains on occurrence of a transition 
from P, or

 it contains a state where P is disabled.

 Weak transition fairness: similar.

 Strong fairness: much more difficult 
algorithm.
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Abstractions

(Book: Chapter 10.1)
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Problems with software 
analysis

 Many possible outcomes and 
interactions.

 Not manageable by an algorithm 
(undecideable, complex).

 Requires a lot of practice and ingenuity 
(e.g., finding invariants).
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More problems

 Testing methods fail to cover potential errors.

 Deductive verification techniques require

 too much time,

 mathematical expertise,

 ingenuity.

 Model checking requires a lot of time/space and may 
introduce modeling errors.
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How to alleviate the 
complexity?

 Abstraction

 Compositionality

 Partial Order Reduction

 Symmetry
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Abstraction

 Represent the program using a smaller 
model.

 Pay attention to preserving the checked 
properties.

 Do not affect the flow of control.
 [ Abstract interpretation (using Galois connection) is 

equivalent to simulation! ]
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Main idea

 Use smaller data objects.

x:= f(m)

y:=g(n)

if x*y>0 then …

else …

x, y never used again.
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How to abstract?

 Assign values {-1, 0, 1} to x and y.

 Based on the following connection:
sgn(x) = 1 if x>0,

0 if x=0, and
-1 if x<0.

sgn(x)*sgn(y)=sgn(x*y).
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Abstraction mapping

 S - states, I - initial states. L(s) - labeling.

 R(S,S) - transition relation.

 h(s) maps s into its abstract image.
Full model       -h Abstract model

I(s)                  I(h(s))
R(s, t)                R(h(s),h(t))

L(h(s))=L(s)
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Traffic light 

example

go

stop

stop
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go

stop

stop

go

stop
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What do we preserve?

go

stop

stop

go

stop

Every execution of the 
full model can be 
simulated by an 
execution of the reduced 
one.

Every LTL property that 
holds in the reduced 
model hold in the full 
one.

But there can be 
properties holding for the 
original model but not 
the abstract one [false 
negatives].
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Preserved:
[](go->O stop)

go

stop

stop

go

stop

Not preserved:

[]<>go

Counterexamples 

need to be 

checked.
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Symmetry

 A permutation is a one-one and onto function 
p:AA.
For example, 13, 24, 31, 45, 52.

 One can combine permutations, e.g.,
p1: 13, 21, 32
p2: 12, 21, 33
p1@p2: 13, 22, 31

 A set of permutations with @ is called a 
symmetry group.
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Using symmetry in analysis

 Want to find some symmetry group such
that for each permutation p in it,
R(s,t) if and only if R(p(s), p(t))
and L(p(s))=L(s).

 Let K(s) be all the states that can be 
permuted to s. This is a set of states such 
that each one can be permuted to the other.
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Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

init
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Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

init

The quotient model
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Homework: what is preserved in the 
following buffer abstraction? What is not 
preserved?

e

empty

quasi

full

q

q

q

f



192

BDD representation
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Computation Tree Logic
. . .

. . .

. . .

. . .

p p

p

. . .

. . .

. . .

. . .

EG p

p p p p

p

p p

AF p
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Computation Tree Logic

q q

q

p

. . .

. . .

. . .

. . .

p

q

p

. . .

. . .

. . .

. . .

E pUq

p

A pUq
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Example formulas 

CTL formulas:

 mutual exclusion:   AG ( cs1  cs2)

 non starvation:  AG (request  AF 
grant)

 “sanity” check: EF request
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Model Checking M |= f

[Clarke, Emerson, Sistla 83]

 The Model Checking algorithm works 
iteratively
on subformulas of  f , from simpler
subformulas to more complex ones

 When checking subformula g of f we assume 
that all subformulas of g have already been 
checked

 For subformula g, the algorithm returns 

the set of states that satisfy g ( Sg )

 The algorithm has time complexity:  
O(|M||f|)
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Model checking f = EF g

Given a model M= < S, I, R, L >

and Sg the sets of states satisfying   g   in M

procedure CheckEF (Sg )

Q := emptyset;  Q’ := Sg ;

while Q  Q’  do

Q := Q’;

Q’ := Q  { s |  s' [ R(s,s’)  Q(s’) ]  }

end while

Sf := Q ; return(Sf )



198

g

g

g

f

f

f

f

f

f

f

Example:   f = EF g
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Model checking f = EG g

CheckEG gets M= < S, I, R, L > and Sg

and returns Sf

procedure CheckEG (Sg)

Q := S ;  Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q { s |  s' [ R(s,s’)  Q(s’) ] }

end while

Sf := Q ;  return(Sf )
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g

g

g

g

g

g

Example: f = EG g
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Symbolic model checking
[Burch, Clarke, McMillan, Dill 1990]

If the model is given explicitly (e.g. by 
adjacent 

matrix) then only systems with about ten
Boolean

variables  (~1000 states) can be handled

Symbolic model checking uses 

Binary Decision Diagrams  ( BDDs )

to represent the model and sets of  states. It 
can handle 

systems with hundreds of Boolean variables.
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Binary decision diagrams 
(BDDs) [Bryant 86]

 Data structure for representing 
Boolean functions

 Often concise in memory

 Canonical representation

 Boolean operations on BDDs can be 
done in polynomial time in the BDD 
size
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 Assume that states in model M are 
encoded by {0,1}n and described by 
Boolean variables  v1...vn

 Sf can be represented  by a BDD over 
v1...vn

 R (a set of pairs of states (s,s’) ) 
can be represented by a BDD over 
v1...vn v1’...vn’

BDDs in model checking
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BDD definition

 A tree representation of a Boolean formula.

 Each leaf represents 0 (false) or 1 (true).

 Each internal leaf represents a node.

 If we follow a path in the tree and go from a 
node left (low) on 0 and right (high) on 1, we 
obtain a leaf that corresponds to the value of 
the formula under this truth assignment.
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Example

a

b c

c c b b

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 0 0 11 1 0 1
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OBDD: there is some fixed appearance 
order between variables, e.g., a<b<c

(a/\(b\/¬c))\/(¬a/\(b/\c))

a

b b

c c c c

0 0 0 11 0 1 1



207

In reduced form: combine all leafs with 
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 0 0 11 0 1 1

In addition, remove nodes with 
identical children (low(x)=high(x)).



208

In reduced form: combine all leafs with 
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c)) 0 1

Unify isomorphic subtrees. Shortcut nodes 
with identical children (low(x)=high(x)).Apply 
bottom up until not possible.
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In reduced form: combine all leafs with 
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c))
0 1

Unify isomorphic subtrees. Shortcut nodes 
with identical children (low(x)=high(x)).Apply 
bottom up until not possible.
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In reduced form: combine all leafs with 
same values, all isomorphic subgraph.

a

b b

c c

(a/\(b\/¬c))\/(¬a/\(b/\c))
0 1

Unify isomorphic subtrees. Shortcut nodes 
with identical children (low(x)=high(x)).Apply 
bottom up until not possible.
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Example, even parity, 3 bits

a

b b

c c c c

1 0 0 01 1 1 0
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Apply reduce

a

b b

c c c c

01
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Apply reduce

a

b b

c c c c

01
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Apply reduce

a

b b

c c c

01
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Apply reduce

a

b b

c c c

01
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Apply reduce

a

b b

c c

01
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f[0/x], f[1/x] (“restrict” algorithm)

 Obtain the replacement of a variable x by 0 
or 1, in formula f, respectively.

 For f[0/x], incoming edges to node x are 
redirected to low(x), and x is removed.

 For f[1/x], incoming edges to node x are 
redirected to high(x), and x is removed.

 Then we reduce the OBBD.
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Calculate x

 x= [0/x]\/[1/x]

 Thus, we apply “restrict” twice to  and 
then “apply” the disjunction.



219

Shannon expansion of Boolean 
expression f.

 f=(¬x/\f[0/x])\/(x/\f[1/x])

 Thus, f#g, for some logical operator # is

f#g=(¬x/\f#g [0/x])\/(x/\f#g [1/x])=

(¬x/\f [0/x]#g [0/x])\/(x/\f [1/x]#g[1/x])
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Now compute f#g recursively:
Let rf be the root of the OBDD for f, and rg be the root 

of the OBDD for g.

 If rf and rg are terminals, then apply rf#rg and put 
the result.

 If both roots are same node (say x), then create a 
low edge to low(rf)#low(rg), and a high edge to 
high(rf)#high(rg).

 If rf is x and rg is y, and x<y, there is no x node in 
g, so g=g[0/x]=g[1/x]. So we create a low edge to 
low(rf)#g and a high edge to high(rf)#g. The 
symmetric case is handled similarly.

 We reduce.



221

Same subgraphs are not 
needed to be explored again 
(use memoising, i.e., 
dynamic programming, 
complexity: exponential

2xmultiplications of sizes.

R1,S1

R6,S5

R2,S3 R3,S2

R3,S3 R4,S3

R5,S4

R6,S3

R4,S3

R4,S3

R5,S4 R6,S5

R6,S5

R6,S4

R6,S5

R5,S4 R6,S5

x

z

t

z

y

x

t

0 1 0 1

R1

R3

R2

R5

R6

R4

S1

S3

S2

S4 S5

x

z

z tt

t
t

y
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Same subgraphs are not 
needed to be explored again 

(use memoising, i.e.,

dynamic programming, 
complexity: exponential

2xmultiplications of sizes.

R1,S1

R6,S5

R2,S3 R3,S2

R3,S3 R4,S3

R5,S4

R6,S3

R4,S3

R4,S3

R5,S4 R6,S5

R6,S5

R6,S4

R6,S5

R5,S4 R6,S5

x

z

t

z

y

x

y

0 1 0 1

R1

R3

R2

R5

R6

R4

S1

S3

S2

S4 S5

x

z

z tt

t
t

y
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Symbolic Model Checking

 Characterize CTL formulas using fixpoints.

 AF= \/AX AF

 EF= EX EF  Z.EX Z

 AG= /\AX AG

 EG= EX EG Z.EX Z

 AU = \/(/\AXU)

 EU =  (EXU) Z.(EXZ)

 AR = /\(\/AXR)

 ER = (EXR)  Z.(EXZ)
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Representing the successor 
relation formula R

 A relation between the current state and the 
next state can be represented as a BDD with 
prime variables representing the variables at 
next states.

 For example:
p/\¬q/\r/\¬p’/\q’/\r’ says that the current state 
satisfies p/\¬q/\r and the next state satisfies 
¬p/\q/\r. (typically, for one transition, 
represented as a Boolean relation).

 If ti represents this relation for transition i, we 

can write for the entire code R=\/i ti.
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Calculating (Z) for 
(Z)=EX Z

 Z is a BDD.

 Rename variables in Z by their primed 
version to obtain BDD Z’.

 Calculate the BDD R/\Z’.

 Let y1’…yn’ be the primed variables,
Then calculate the BDD 
B=y1’… yn’ R/\Z’ to remove primed 
variables. 

 Calculate the BDD B.
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Model checking Z  (least fixed point)
For example, = EX Z
For formulas with main operator .

procedure Check LFP ()

Q :=False;  Q’ := (Q) ;

while Q  Q’  do

Q := Q’;

Q’ := (Q) ;

end while

return(Q)
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Model checking Z  (Greatest fixed point)
For example, = (EX Z)
For formulas with main operator .

procedure Check GFP ()

Q :=True;  Q’ := (Q) ;

while Q  Q’  do

Q := Q’;

Q’ := (Q) ;

end while

return(Q)


