
1

Mini course on Model Checking
MarktOberdorf Summer School

Prof. Doron A. Peled

Bar Ilan University,
Israel

Version 2012

2

Some related books:

Also:Mainly:

3

4

Goal: software reliability

Use software engineering
methodologies to
develop the code.

Use formal methods
during code
development

5

What are formal methods?

Techniques for analyzing systems, based on
some mathematics.

This does not mean that the user must be a
mathematician (but here we study the
math).

(Ambitious) Plan

 How to model (concurrent) systems?

 How to write a specification using temporal logic and
automata on infinite words.

 How to translate TL to automata.

 How to check consistency between model and
specification (model checking).

 The SPIN tool (you can us it!)

 Branching time model checking, BDD and CTL.

6

7

Specification:
Informal, textual, visual

The value of x will be between 1 and 5,
until some point where it will become 7.
In any case it will never be negative.

(1<=x<=5 U (x=7/\ [] x>=0))

1<=x<=5 X=7

X>=0

8

Modeling Software Systems
for Analysis

(Book: Chapter 4)

9

Modelling and specification for
verification and validation

 How to specify what the software is
supposed to do?

 How to model it in a way that allows us
to check it?

10

Systems of interest

 Sequential systems.

 Concurrent systems (multi-threaded).

1. Distributive systems.

2. Reactive systems.

3. Embedded systems
(software + hardware).

11

Sequential systems.

 Perform some computational task.

 Have some initial condition, e.g.,
0in A[i] integer.

 Have some final assertion, e.g.,
0in-1 A[i]A[i+1].
(What is the problem with this spec?)

 Are supposed to terminate.

12

Concurrent Systems

Involve several computation agents.

Termination may indicate an abnormal
event (interrupt, strike).

May exploit diverse computational power.

May involve remote components.

May interact with users (Reactive).

May involve hardware components
(Embedded).

13

Problems in modeling systems

 Representing concurrency:
- Allow one transition at a time, or
- Allow coinciding transitions.

 Granularity of transitions.

 Assignments and checks?

 Application of methods?

 Global (all the system) or local (one
thread at a time) states.

14

Modeling.
The states based model.

 V={v0,v1,v2, …} - a set of variables, over some
domain.

 p(v0, v1, …, vn) - a parametrized assertion, e.g.,

v0=v1+v2 /\ v3>v4.

 A state is an assignment of values to the program
variables. For example:
s=<v0=1,v1=3,v3=7,…,v18=2>

 For predicate (first order assertion) p:
p(s) is p under the assignment s.
Example: p is x>y /\ y>z. s=<x=4, y=3, z=5>.
Then we have 4>3 /\ 3>5, which is false.

15

State space

 The state space of a program is the set
of all possible states for it.

 For example, if V={a, b, c} and the
variables are over the naturals, then the
state space includes:
<a=0,b=0,c=0>,<a=1,b=0,c=0>,

<a=1,b=1,c=0>,<a=932,b=5609,c=6658>…

16

Atomic Transitions

 Each atomic transition represents a
small piece of code such that no smaller
piece of code is observable.

 Is a:=a+1 atomic?

 In some systems, e.g., when a is a
register and the transition is executed
using an inc command.

17

Non atomicity

 Execute the
following when a=0
in two concurrent
processes:

 P1:a=a+1

 P2:a=a+1

 Result: a=2.

 Is this always the
case?

 Consider the actual
translation:

P1:load R1,a

inc R1

store R1,a

P2:load R2,a

inc R2

store R2,a

 a may be also 1.

18

Scenario

P1:load R1,a

inc R1

store R1,a

P2:load R2,a

inc R2

store R2,a

a=0

R1=0

R2=0

R1=1

R2=1

a=1

a=1

19

Representing transitions

 Each transition has two parts:

 The enabling condition: a predicate.

 The transformation: a multiple assignment.

 For example:
a>b  (c,d):=(d,c)
This transition can be executed in states
where a>b. The result of executing it is
switching the value of c with d.

20

Initial condition

 A predicate I.

 The program can
start from states s
such that I (s)
holds.

 For example:
I (s)=a >b /\ b >c.

21

A transition system

 A (finite) set of variables V over some
domain.

 A set of states S.

 A (finite) set of transitions T, each
transition e t has
 an enabling condition e, and

 a transformation t.

 An initial condition I.

22

Example

 V={a, b, c, d, e}.

 S: all assignments of natural numbers

for variables in V.

 T={c >0(c,e):=(c -1,e +1),
d >0(d,e):=(d -1,e +1)}

 I: c =a /\ d =b /\ e =0

 What does this transition system do?

23

The interleaving model

 An execution is a maximal finite or infinite
sequence of states s0, s1, s2, …
That is: finite if nothing is enabled from the last
state.

 The first state s0 satisfies the initial
condition, I.e., I (s0).

 Moving from one state si to its successor
si+1 is by executing a transition et:
 e (si), i.e., si satisfies e.

 si+1 is obtained by applying t to si.

24

Example:

 s0=<a=2, b=1, c=2, d=1, e=0>

 s1=<a=2, b=1, c=1, d=1, e=1>

 s2=<a=2, b=1, c=1, d=0, e=2>

 s3=<a=2, b=1 ,c=0, d=0, e=3>

T={c>0(c,e):=(c -1,e +1),

d>0(d,e):=(d-1,e+1)}

I: c=a /\ d=b /\ e=0

25

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0:=NC0
T1:PC0=NC0/\Turn=0

PC0:=CR0
T2:PC0=CR0

(PC0,Turn):=(L0,1)
T3:PC1=L1PC1=NC1
T4:PC1=NC1/\Turn=1

PC1:=CR1
T5:PC1=CR1

(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

The transitions

Is this the only reasonable way to model this program?

26

The state graph:Successor relation
between reachable states.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1T0 T0T3 T3

T1 T4
T3

T0 T3

T0

T0 T4T1 T3

T2

T2

T5

T5

27

Some important points

 Reachable states: obtained from an initial state
through a sequence of enabled transitions.

 Executions: the set of maximal paths (finite or
terminating in a node where nothing is
enabled).

 Nondeterministic choice: when more than a
single transition is enabled at a given state. We
have a nondeterministic choice when at least
one node at the state graph has more than one
successor.

28

Always ¬(PC0=CR0/\PC1=CR1)
(Mutual exclusion)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

29

Always if Turn=0 then at
some point Turn=1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

30

Always if Turn=0 then at
some point Turn=1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

31

Interleaving semantics:
Execute one transition at a time.

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=1
L0,CR1

Turn=1
L0,NC1

Need to check the property

for every possible interleaving!

32

Interleaving semantics

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=1
L0,CR1

Turn=1
L0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1

33

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0:=NC0

T1:PC0=NC0/\Turn=0PC0:=CR0

T1’:PC0=NC0/\Turn=1PC0:=NC0

T2:PC0=CR0(PC0,Turn):=(L0,1)

T3:PC1==L1PC1=NC1

T4:PC1=NC1/\Turn=1PC1:=CR1

T4’:PC1=NC1/\Turn=0PC1:=NC1

T5:PC1=CR1(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

Busy waiting

34

Always when Turn=0 then
at some point Turn=1

Now it does not hold!

(Red subgraph generates a counterexample execution.)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1T4’ T1’

35

Combinatorial explosion

V1:=1

V1:=3

V1:=2

Vn:=1

Vn:=3

Vn:=2
…

How many states?

36

Global states

3n states

v1=1,v2=1…vn=1

v1=2,v2=1…vn=1 v1=1,v2=1…vn=2…

v1=3,v2=1…vn=1 …

…

v1=1,v2=1…vn=3

37

Specification Formalisms

(Book: Chapter 5)

38

Properties of formalisms

 Formal. Unique interpretation.
 Intuitive. Simple to understand (visual).
 Succinct. Spec. of reasonable size.
 Effective.

 Check that there are no contradictions.
 Check that the spec. is implementable.
 Check that the implementation satisfies spec.

 Expressive.
 May be used to generate initial code.
Specifying the implementation or its properties?

39

Temporal logic

 Dynamic, speaks about several “worlds”
and the relation between them.

 Our “worlds” are the states in an
execution.

 There is a linear relation between them,
each two sequences in our execution
are ordered.

 Interpretation: over an execution,
later over all executions.

40

LTL: Syntax

 ::= () | ¬ | /\  \/ U
 |O  | p

“box”, “always”, “forever”

“diamond”, “eventually”, “sometimes”

O “nexttime”

U“until”

Propositions p, q, r, … Each represents some
state property (x>y+1, z=t, at_CR, etc.)

41

Semantics over suffixes of execution





O 

U



    








…

…

…

…

42

Can discard some operators

 Instead of <>p, write true U p.

 Instead of []p, we can write ¬(<>¬p),
or ¬(true U ¬p).
Because []p=¬¬[]p.
¬[]p means it is not true that p holds
forever, or at some point ¬p holds or
<>¬p.

43

Combinations

 []<>p “p will happen infinitely often”

 <>[]p “p will happen from some point
forever”.

 ([]<>p)  ([]<>q) “If p happens

infinitely often, then q also happens
infinitely often”.

44

Some relations:

 [](/\)=([])/\([])

 But <>(/\)(<>)/\(<>)

 <>(\/)=(<>)\/(<>)

 But [](\/)([])\/([])














…

…

45

What about

 ([]<>)/\([]<>)=[]<>(/\)?

 ([]<>)\/([]<>)=[]<>(\/)?

 (<>[])/\(<>[])=<>[](/\)?

 (<>[])\/(<>[])=<>[](\/)?

No, just 

Yes!!!

Yes!!!

No, just 

46

Formal semantic definition

 Let  be a sequence s0 s1 s2 …

 Let i be a suffix of : si si+1 si+2 … (0 =)

 i |= p, where p a proposition, if si|=p.

 i |= /\ if i |=  and i |= .

 i |= \/ if i |=  or i |= .

 i |= ¬ if it is not the case that i |= .

 i |= <> if for some ji, j |= .

 i |= [] if for each ji, j |= .

 i |= U  if for some ji, j|=.
and for each ik<j, k |=.

 How to define i |= O?

47

Then we interpret:

 For a state:
s|=p as in propositional logic.

 For an execution:
|= is interpreted over a sequence, as
in previous slide.

 For a system/program:
P|= holds if |= for every sequence
 of P.

48

Spring Example

s1 s3s2

pull

release

release

extended
malfunction

extended

r0 = s1 s2 s1 s2 s1 s2 s1 …

r1 = s1 s2 s3 s3 s3 s3 s3 …

r2 = s1 s2 s1 s2 s3 s3 s3 …

…

49

LTL satisfaction by a single
sequence

malfunction

s1 s3s2pull

release

release

extended extended

r2 = s1 s2 s1 s2 s3 s3 s3 …

r2 |= extended ??

r2 |= O extended ??

r2 |= O O extended ??

r2 |= <> extended ??

r2 |= [] extended ??

r2 |= <>[] extended ??

r2 |= ¬ <>[] extended ??

r2 |= (¬extended) U malfunction ??

r2 |= [](¬extended->O extended) ??

50

LTL satisfaction by a system

malfunction

s1 s3s2pull

release

release

extended extended

P |= extended ??

P |= O extended ??

P |= O O extended ??

P |= <> extended ??

P|= [] extended ??

P |= <>[] extended ??

P |= ¬ <>[] extended ??

P |= (¬extended) U malfunction ??

P |= [](¬extended->O extended) ??

51

More specifications

 [] (PC0=NC0  <> PC0=CR0)

 [] (PC0=NC0 U Turn=0)

 Try at home:
- The processes alternate in entering
their critical sections.
- Each process enters its critical section
infinitely often.

52

Proof system

 ¬<>p<-->[]¬p

 [](pq)([]p[]q)

 []p(p/\O[]p)

 O¬p<-->¬Op

 [](pOp)(p[]p)

 (pUq)<-->(q\/(p/\O(pUq)))

 (pUq)<>q

 + propositional logic
axiomatization.

 + proof rule:
p
[]p

 But, there is actually
no need to do
proofs!! Use
algorithms instead

53

Traffic light example

Green  Yellow  Red

Always has exactly one light:

[](¬(gr/\ye)/\¬(ye/\re)/\¬(re/\gr)/\(gr\/ye\/re))

Correct change of color:

[]((grgrU ye)/\(yeyeU re)/\(rereU gr))

54

Another kind of traffic light

GreenYellowRedYellow

First attempt:

[]((gr\/re(gr\/re) U ye)\/(ye ye U (gr\/re)))

Correct specification:

[]((gr(gr U (ye /\ (ye U re))))

/\(re(re U (ye /\ (ye U gr))))

/\(ye(ye U (gr \/ re))))
Needed only when we
can start with yellow

55

Automata over finite words

 A=<S, S, , I, F>

 S (finite) - the alphabet.
 S (finite) - the states.
   S x S x S - the transition relation.
 I  S - the starting states.
 F  S - the accepting states.

a

a

b

bs0 s1

56

The transition relation

 (s0, a, s0)

 (s0, b, s1)

 (s1, a, s0)

 (s1, b, s1)

a

a

b

bs0 s1

57

A run over a word

 A word over S, e.g., abaab.
 A sequence of states, e.g. s0 s0 s1 s0 s0 s1.
 Starts with an initial state.
 Follows the transition relation (si, ci , si+1).
 Accepting if ends at accepting state.

a

a

b

bs0 s1

58

The language of an
automaton

 The words that are accepted by the
automaton.

 Includes aabbba, abbbba.
 Does not include abab, abbb.
 What is the language?

a

a

b

bs0 s1

59

Nondeterministic automaton

 Transitions: (s0,a ,s0), (s0,b ,s0),
(s0,a ,s1),(s1,a ,s1).

 What is the language of this
automaton?

a,b
a

as0
s1

60

Equivalent deterministic automaton

b

a

as0 s1

b

a,b a
as0 s1

61

Automata over infinite words

 Similar definition.

 Runs on infinite words over S.

 Accepts when an accepting state occurs
infinitely often in a run.

a

a

b

bs0 s1

62

Automata over infinite words
(Büchi automata,-automata)

 Consider the word abababab…

 There is a run s0s0s1s0s1s0s1 …

 This run in accepting, since s0

appears infinitely many times.

a

a

b

bs0 s1

63

Other runs

 For the word bbbbb… the run is
s0 s1 s1 s1 s1… and is not accepting.

 For the word aaabbbbb …, the
run is s0 s0 s0 s0 s1 s1 s1 s1 …

 What is the run for ababbabbb …?

a

a

b

bs0 s1

64

Nondeterministic automaton

 What is the language of this automaton?

 What is the LTL specification if
b -- PC0=CR0, a =¬b?

•Can you find a deterministic automaton with same language?

•Can you prove there is no such deterministic automaton?

a,b
a

as0 s1

65

No deterministic automaton
for (a+b)*aω

 In a deterministic automaton there is one run for
each word.

 After some sequence of a’s, i.e., aaa…a must reach
some accepting state.

 Now add b, obtaining aaa…ab.
 After some more a’s, i.e., aaa…abaaa…a must reach

some accepting state.
 Now add b, obtaining aaa…abaaa…ab.
 Continuing this way, one obtains a run that has

infinitely many b’s but reaches an accepting state
(in a finite automaton, at least one would repeat)
infinitely often.

66

Specification using Automata

 Let each letter correspond to some propositional
property.

 Example: a -- P0 enters critical section,
b -- P0 does not enter section.

 []<>PC0=CR0

a

a

b

bs0 s1

67

Mutual Exclusion

 a -- PC0=CR0/\PC1=CR1
 b -- ¬(PC0=CR0/\PC1=CR1)
 c -- true
 []¬(PC0=CR0/\PC1=CR1)

b a
cs0 s1

68

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

T0:PC0=L0PC0=NC0

T1:PC0=NC0/\Turn=0

PC0:=CR0

T2:PC0=CR0

(PC0,Turn):=(L0,1)

T3:PC1==L1PC1=NC1

T4:PC1=NC1/\Turn=1

PC1:=CR1

T5:PC1=CR1

(PC1,Turn):=(L1,0)

Initially: PC0=L0/\PC1=L1

Apply now to our
program:

69

The state space

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

70

[]¬(PC0=CR0/\PC1=CR1)
(Mutual exclusion)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

71

[](Turn=0 <>Turn=1)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

72

[](Turn=0  <>Turn=1)

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

73

Correctness condition

 We need to define a correctness
condition for a model to satisfy a
specification.

 Language of a model: L(Model)

 Language of a specification: L(Spec).

 We need: L(Model)  L(Spec).

74

Correctness

All sequences

Sequences satisfying Spec

Program executions

75

Incorrectness

All sequences

Sequences satisfying Spec

Program executions

Counter

examples

76

Automatic Verification

(Book: Chapter 6)

77

How can we check the model?

 The model is a graph.

 The specification should refer the the
graph representation.

 Apply graph theory algorithms.

78

What properties can we check?

 Invariant: a property that needs to
hold in each state.

 Deadlock detection: can we reach a
state where the program is blocked?

 Dead code: does the program have
parts that are never executed.

79

How to perform the checking?

 Apply a search strategy (Depth first
search, Breadth first search).

 Check states/transitions during the
search.

 If property does not hold, report
counter example!

80

If it is so good, why learn deductive
verification methods?

 Model checking works for finite state* systems.
Would not work with

 Unconstrained integers.

 Unbounded message queues.

 General data structures:

queues, trees, stacks…

 parametric algorithms and systems.

* But new MC methods make use of decidable logic
theories (SMT).

81

The state space explosion

 Need to represent the state space of a
program in the computer memory.

 Each state can be as big as the entire
memory!

 Many states:

 Each integer variable has 2^32 possibilities.
Two such variables have 2^64 possibilities.

 In concurrent protocols, the number of states
usually grows exponentially with the number of
processes.

82

If it is so constrained, is it of any use?

 Many protocols are finite state.

 Many programs or procedure are finite state
in nature. Can use abstraction techniques.

 Sometimes it is possible to decompose a
program, and prove part of it by model
checking and part by theorem proving.

 Many techniques for reducing the state space
explosion.

83

How can we check properties with DFS?

 Invariants: check that all reachable states
satisfy the invariant property. If not, show
a path from an initial state to a bad state.

 Deadlocks: check whether a state where no
process can continue is reached.

 Dead code: as you progress with the DFS,
mark all the transitions that are executed at
least once.

84

¬(PC0=CR0/\PC1=CR1) is

an invariant!

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

85

Turn=0
L0,L1

Turn=1
L0,L1

init

•Propositions are attached to incoming nodes.

•All nodes are accepting.

Turn=1
L0,L1

Turn=0
L0,L1

86

Correctness condition

 We want to find a correctness condition
for a model to satisfy a specification.

 Language of a model: L(Model)

 Language of a specification: L(Spec).

 We need: L(Model)  L(Spec).

87

Correctness

All sequences

Sequences satisfying Spec

Program executions

88

How to prove correctness?

 Show that L(Model)  L(Spec).

 Equivalently: ______
Show that L(Model)  L(Spec) = Ø.

 Also: can obtain Spec by translating
from LTL!

89

What do we need to know?

 How to intersect two automata?

 How to complement an automaton?

 How to translate from LTL to an
automaton?

90

Intersecting M1=(S1,S,T1,I1,A1)
and M2=(S2,S,T2,I2,S2)

 Run the two automata in parallel.

 Each state is a pair of states: S1 x S2

 Initial states are pairs of initials: I1 x I2

 Acceptance depends on first
component: A1 x S2

 Conforms with transition relation:
(x1,y1)-a->(x2,y2) when
x1-a->x2 and y1-a->y2.

91

Example (all states of second

automaton accepting!)

a

b

ct0 t1

a

a

b,c

b,cs0 s1

States: (s0,t0), (s0,t1), (s1,t0), (s1,t1).

Accepting: (s0,t0), (s0,t1). Initial: (s0,t0).

92

a

b

ct0 t1

a

a

b,c

b,cs0 s1

s0,t0

s0,t1

s1,t1

s1,t0b

b

a

c

a

c

93

More complicated when A2S2

a

b

ct0 t1

a

a

b,c

b,cs0 s1

Should we have acceptance when both
components accepting? I.e., {(s0,t1)}?

No, consider (ba)

It should be accepted, but never passes that state.

s0,t0

s1,t1

b a

c

94

More complicated when A2S2

a

b

ct0 t1

a

a

b,c
b,cs0 s1

Should we have acceptance when at least one
components is accepting? I.e., {(s0,t0),(s0,t1),(s1,t1)}?
No, consider b c

It should not be accepted, but here will loop through
(s1,t1)

s0,t0

s1,t1

b

c

a

95

Intersection - general case

q0 q2

q3q1

q0,q3 q1,q3q1,q2

a a, c

c

c, bb

c

c

b

a

96

Version 0: to catch accepting state q0

Version 1: to catch accepting state q2

q0,q3 q1,q3q1,q2

q0,q3 q1,q3q1,q2

Move when see accepting of left (q0) Move when see accepting of right (q2)

Version 0

Version 1

c

c

c

c

b

a

b

a

97

Version 0: to catch accepting state q0

Version 1: to catch accepting state q2

q0,q3 q1,q3q1,q2

q0,q3 q1,q3q1,q2

Move when see accepting of left (q0) Move when see accepting of right (q2)

Version 0

Version 1

c

c

c

c

b

a

b

a

98

Make an accepting state in one of the
version according to a component
accepting state

q0,q3,0 q1,q3,0q1,q2,0

q0,q3,1 q1,q3 ,1q1,q2 ,1

Version 1

Version 0

c

c

c

c

b

ab

a

99

How to check for emptiness?

s0,t0

s0,t1

s1,t1

b

a

c

a

c

100

Emptiness...

Need to check if there exists an accepting
run (passes through an accepting state
infinitely often).

101

Strongly Connected
Component (SCC)

A set of states with a path between each
pair of them.

Can use Tarjan’s DFS algorithm for finding
maximal SCC’s.

102

Finding accepting runs

If there is an accepting run, then at least one accepting state
repeats on it forever.

Look at a suffix of this run where all the states appear infinitely
often.

These states form a strongly connected component on the
automaton graph, including an accepting state.

Find a component like that and form an accepting cycle including
the accepting state.

103

Equivalently...

 A strongly connected component: a set
of nodes where each node is reachable
by a path from each other node. Find a
reachable strongly connected
component with an accepting node.

104

How to complement?

 Complementation is hard!

 Can ask for the negated property (the
sequences that should never occur).

 Can translate from LTL formula  to
automaton A, and complement A. But:
can translate ¬ into an automaton
directly!

105

Translating from logic to
automata

(Book: Chapter 6)

106

Why translating?

 Want to write the specification in some
logic.

 Want model-checking tools to be able
to check the specification automatically.

107

Generalized Büchi automata

 Acceptance condition F is a set
F={f1 , f2 , … , fn } where each fi is a set
of states.

 To accept, a run needs to pass infinitely
often through a state from every set fi .

108

Translating into simple Büchi
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

a

b

a

109

Translating into simple Büchi
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

b

a

110

Translating into simple Büchi
automaton

q0 q2q1

q0 q2q1

Version 0

Version 1

c

c

c

c

b

a

b

a

111

Preprocessing

 Convert into normal form, where negation
only applies to propositional variables.

 ¬[] becomes <>¬.

 ¬<> becomes [] ¬.

 What about ¬ ( U )?

 Define operator R such that
¬ ( U ) = (¬) R (¬),

¬ ( R ) = (¬) U (¬).

112

Semantics of pR q

p

qqq qq qq

q

qq

q qqq

¬p¬p¬p

¬p ¬p ¬p ¬p ¬p ¬p ¬p ¬p¬p

¬p

113

 Replace ¬true by false, and ¬false by
true.

 Replace ¬ ( \/ ) by (¬) /\ (¬) and
¬ ( /\ ) by (¬) \/ (¬)

114

Eliminate implications, <>, []

 Replace  ->  by (¬ ) \/ .

 Replace <> by (true U ).

 Replace [] by (false R ).

115

Example

 Translate ([]<>P)  ([]<>Q)

 Eliminate implication ¬([]<>P) \/ ([]<>Q)

 Eliminate [], <>:
¬(false R (true U P)) \/ (false R (true U Q))

 Push negation inwards:
(true U (false R ¬ P)) \/ (false R (true U Q))

116

The data structure

Incoming

New Old

NextName

117

The main idea

 U  =  \/ ( /\ O ( U ))

 R  =  /\ ( \/ O ( R ))

This separates the formulas into two
parts: one holds in the current state,
and the other in the next state.

118

How to translate?

 Take one formula from “New” and add
it to “Old”.

 According to the formula, either

 Split the current node into two (or
characteristics), or

 Evolve the node into a new version (and
characteristics).

119

Splitting

Incoming

New Old

Next

Incoming

New Old

Next

Incoming

New Old

Next

Copy incoming

edges, update

other field.

120

Evolving

Incoming

New Old

Next

Incoming

New Old

Next

Copy incoming

edges, update

other field.

121

Possible cases:

  \/ , split:

 Add  to New.

 Add  to New.

  /\ , evolve:

 Add  to New.

 O , evolve:

 Add  to Next.

122

More cases:

  U  , split:

 Add  to New, add U  to Next.

 Add  to New.

[Because U  =  \/ ( /\ O (U )).]

  R  , split:

 Add  to New.

 Add  to New,  R  to Next.

[Because  R  =  /\ ( \/ O ( R ))=

( /\ ) \/ ( /\ O ( R )).]

123

How to start?

Incoming

New Old

Next

init

aU(bUc)

124

Incoming

init

aU(bUc)

Incoming Incoming

aU(bUc)aU(bUc) bUc

aU(bUc)

a

init init

125

Incoming

aU(bUc)bUc

init
init

Incoming Incoming

aU(bUc)aU(bUc) c

(bUc)

b
bUc bUc

126

When to stop splitting?

 When “New” is empty.

 Then compare against a list of existing nodes
“Nodes”:

 If such a with same “Old”, “Next” exists,
just add the incoming edges of the new version
to the old one.

 Otherwise, add the node to “Nodes”. Generate a
successor with “New” set to “Next” of father.

127

Incoming

a,aU(bUc)

aU(bUc)

init

Incoming

aU(bUc)

Copy Next field to

New field of the

successor, and making

an edge to the new

successor.

Start

evolving/splitting

successor

When a node is added to “Nodes”…

128

When there are no pending
nodes/successors to process

Each node in “Nodes”
become a state in the
automaton. It is
labeled by the
propositions/negated
propositions in the
“old” field.

Successor relationship
according to the
“incoming” field.

Incoming

New Old

Next

X

Node Y

a, b, ¬c

129

The resulted nodes.

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

130

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

Initial nodes: those
with “init” edge in “incoming”

131

Acceptance conditions: guaranteeing that for
each subformula U ,  eventually holds

 The successor relation only guarantees that
either  holds now, or is delayed.

 Use “generalized Buchi automata”, where
there are several acceptance sets f1, f2, …, fn,
and each accepted infinite sequence must
include at least one state from each set
infinitely often.

 Each set corresponds to a subformula of form
U . Guarantees that it is never the case
that  is delayed forever.

132

Accepting w.r.t. bU c

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

All nodes with c, or without bUc.

133

Acceptance w.r.t. aU (bU c)

a, aU(bUc) b, bUc, aU(bUc) c, bUc, aU(bUc)

b, bUc c, bUc

All nodes with bUc or without aU(bUc).

134

a b c

b c

The automaton (without
the accepting conditions)

Init

a

a

b

b

b

b
c

c
c

c

135

The SPIN System

136

What is SPIN?

 Model-checker.

 Based on automata theory.

 Allows LTL or automata specification

 Efficient (on-the-fly model checking,
partial order reduction).

 Developed in Bell Laboratories.

137

Documentation

Paper: The model checker SPIN,
G.J. Holzmann, IEEE Transactions
on Software Engineering, Vol 23,
279-295.

Web: http://www.spinroot.com

138

The language of SPIN

 The expressions are from C.

 The communication is from CSP.

 The constructs are from Dijkstra’s
Guarded Command.

139

Expressions

 Arithmetic: +, -, *, /, %

 Comparison: >, >=, <, <=, ==, !=

 Boolean: &&, ||, !

 Assignment: =

 Increment/decrement: ++, --

140

Declaration

 byte name1, name2=4, name3;

 bit b1,b2,b3;

 short s1,s2;

 int arr1[5];

141

Message types and channels

 mtype = {OK, READY, ACK}

 mtype Mvar = ACK

 chan Ng=[2] of {byte, byte, mtype},
Next=[0] of {byte}

Ng has a buffer of 2, each message consists of two
bytes and an enumerable type (mtype).
Next is used with handshake message passing.

142

Sending and receiving a
message

Channel declaration:

 chan qname=[3] of {mtype, byte, byte}
In sender:

 qname!tag3(expr1, expr2)
or equivalently:

qname!tag3, expr1, expr2
In Receiver:

 qname?tag3(var1,var2)

143

Defining an array of channels

Channel declaration:

 chan qname=[3] of {mtype, byte, byte}
defines a channel with buffer size 3.

 chan comm[5]=[0] of {byte, byte}
defines an array of channels (indexed 0 to 4.
Communication is synchronous (handshaking),
meaning that the sender waits for the receiver.

144

Condition

if

:: x%2==1 -> z=z*y; x--

:: x%2==0 -> y=y*y; x=x/2

fi

If more than one guard is enabled: a nondeterministic
choice.

If no guard is enabled: the process waits (until a guard
becomes enabled).

145

Looping

do

:: x>y -> x=x-y

:: y>x -> y=y-x

:: else break

od;

Normal way to terminate a loop: with break. (or goto).

As in condition, we may have a nondeterministic loop or
have to wait.

146

Processes

Definition of a process:

proctype prname (byte Id; chan Comm)

{

statements

}

Activation of a process:

run prname (7, Con[1]);

147

init process is the root of
activating all others

init { statements }

init {byte I=0;

atomic{do

::I<10 -> run prname(I, chan[I]);
I=I+1

::I=10 -> break;

od}}

atomic allows performing several actions as one
atomic step.

148

Exmaples of Mutual exclusion

Reference:

A. Ben-Ari, Principles of Concurrent and
Distributed Programs, Prentice-Hall
1990.

149

General structure of mutual
exclusion algorithm\

loop

Non_Critical_Section
;

TR:Pre_Protocol;

CR:Critical_Section;

Post_protocol;

end loop;

Propositions:

inCRi, inTRi.

150

Properties

loop

Non_Critical_Section
;

TR:Pre_Protocol;

CR:Critical_Section;

Post_protocol;

end loop;

Assumption:

~<>[]inCRi

Requirements:

[]~(inCR0/\inCR1)

[](inTRi<>inCRi)

Not assuming:

[]<>inTRi

151

Turn:bit:=1;

task P0 is

begin

loop

Non_Critical_Sec;

Wait Turn=0;

Critical_Sec;

Turn:=1;

end loop

end P0.

task P1 is

begin

loop

Non_Critical_Sec;

Wait Turn=1;

Critical_Sec;

Turn:=0;

end loop

end P1.

152

Translating into SPIN

#define critical (incrit[0] ||incrit[1])

byte turn=0, incrit[2]=0;

proctype P (bool id)

{ do

:: 1 ->

do

:: 1 -> skip

:: 1 -> break

od;

try:if

::turn==id -> skip

fi;

cr:incrit[id]=1;

incrit[id]=0;

turn=1-turn

od}

init { atomic{

run P(0); run P(1) } }

153

Running SPIN

 Can download and implement (for free)
using www.spinroot.com

 Available in our system.

 Graphical interface: xspin

http://www.spinroot.com/

154

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

155

Project

 Model in Spin

 Specify properties

 Do model checking

 Can this work without fairness?

 What to do with fairness?

156

Modeling issues

Book: chapters 4.12, 5.4, 8.4, 10.1

157

Fairness

(Book: Chapter 4.12, 8.3, 8.4)

158

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

159

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

c1=c2=0,
turn=1

160

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

boolean c1 initially 1;

boolean c2 initially 1;

integer (1..2) turn initially 1;

c1=c2=0,
turn=1

161

Dekker’s
algorithm

P1::while true do
begin
non-critical section 1
c1:=0;
while c2=0 do

begin
if turn=2 then
begin

c1:=1;
wait until turn=1;

c1:=0;
end

end
critical section 1
c1:=1;
turn:=2

end.

P2::while true do
begin
non-critical section 2
c2:=0;
while c1=0 do

begin
if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end
critical section 2
c2:=1;
turn:=1

end.

P1 waits for P2 to set c2 to 1 again.
Since turn=1 (priority for P1), P2 is
ready to do that. But never gets the
chance, since P1 is constantly active
checking c2 in its while loop.

c1=c2=0,
turn=1

162

0:START P1

11:c1:=1

12:true

13:end2:c1:=0

8:c2=0?

7:turn=2?

6:c1:=0

3:c1:=1

11:turn:=2

10:c1:=1

9:critical-1

4:no-op

5:turn=2?

no

no

no

noyes

yes

yes

yes

0:START P2

11:c2:=1

12:true

13:end2:c2:=0

8:c1=0?

7:turn=1?

6:c2:=0

3:c2:=1

11:turn:=1

10:c2:=1

9:critical-2

4:no-op

5:turn=1?

no

no

no

noyes

yes

yes

yes

Initially:

turn=1

163

What went wrong?

 The execution is unfair to P2. It
is not allowed a chance to
execute.

 Such an execution is due to the
interleaving model (just picking
an enabled transition to execute
next).

 If it did, it would continue and
set c2 to 0, which would allow
P1 to progress.

 Fairness = excluding some of
the executions in the
interleaving model, which do
not correspond to actual
behavior of the system.

while c1=0 do
begin

if turn=1 then
begin

c2:=1;
wait until turn=2;

c2:=0;
end

end

164

Recall:
The interleaving model

 An execution is a finite or infinite sequence of states s0, s1, s2,
…

 The initial state satisfies the initial condition, I.e., I (s0).

 Moving from one state si to si+1 is by executing a transition
et:

 e(si), I.e., si satisfies e.

 si+1 is obtained by applying t to si.

Now: consider only “fair” executions. Fairness constrains
sequences that are considered to be executions.

Fair
executions

Sequences
Executions

165

Some fairness definitions

 Weak transition fairness:
It cannot happen that a transition is enabled indefinitely, but is
never executed.

 Weak process fairness:
It cannot happen that a process is enabled indefinitely, but non
of its transitions is ever executed

 Strong transition fairness:
If a transition is infinitely often enabled, it will get executed.

 Strong process fairness:
If at least one transition of a process is infinitely often enabled,
a transition of this process will be executed.

166

Example

P1::x=1 P2: do
:: y==0 ->

if
:: true
:: x==1 -> y=1
fi

od

Initially: x=0; y=0;

In order for the loop to
terminate (in a deadlock !)
we need P1 to execute the
assignment. But P1 may
never execute, since P2 is
in a loop executing true.
Consequently, x==1 never
holds, and y is never
assigned a 1.

pc1=l0(pc1,x):=(l1,1) /* x=1 */

pc2=r0/\y=0pc2=r1 /* y==0*/

pc2=r1pc2=r0 /* true */

pc2=r1/\x=1(pc2,y):=(r0,1)
/* x==1  y:=1 */

167

Weak transition fairness

P1::x=1
P2: do

:: y==0 ->
if
:: true
:: x==1 -> y=1
fi

od

Initially: x=0; y=0;

Under weak transition
fairness, P1 would assign
1 to x, but this does not
guarantee that 1 is
assigned to y and thus the
P2 loop will terminates,
since the transition for
checking x==1 is not
continuously enabled
(program counter not
always there).

Weak process fairness only
guarantees P1 to execute, but P2
can still choose the true guard.

Strong process fairness:
same.

168

Strong transition fairness

P1::x=1 P2: do

:: y==0 ->
if

:: true
:: x==1 -> y=1

fi
od

Initially: x=0; y=0;

Under strong transition
fairness, P1 would assign
1 to x. If the execution was
infinite, the transition
checking x==1 was
infinitely often enabled.
Hence it would be
eventually selected. Then
assigning y=1, the main
loop is not enabled
anymore.

169

Specifying fairness conditions

 Express properties over an alternating
sequence of states and transitions:
s0 1 s1 1 s2 …

 Use transition predicates exec.

170

Some fairness definitions

 Weak transition fairness:

/\ T (<>[]en []<>exec).

Equivalently: /\ T ¬<>[](en /\¬exec)

 Weak process fairness:

/\Pi (<>[]enPi []<>execPi)

 Strong transition fairness:

/\ T ([]<>en []<>exec)

 Strong process fairness:

/\Pi ([]<>enPi []<>execPi)

exec  is executed.

execPi some transition

of Pi is executed.

en  is enabled.

enPi some transition of

process Pi is enabled.

enPi = \/ Pi en

execPi = \/ Pi exec

171

“Weaker fairness condition”

 A is weaker than B if B A.
(Means A has more executions
than B.)

 Consider the executions L(A)
and L(B). Then L(B)  L(A).

 If an execution is strong
{process/transition} fair, then it
is also weak
{process/transition} fair.

 There are fewer strong
{process,transition} fair
executions.

Strong
transition
fair execs

Weak
process

fair execs

Weak
transition
fair execs

Strong
process

fair execs

172

Fairness is an abstraction; no scheduler
can guarantee exactly all fair executions!

Initially: x=0, y=0

P1::x=1
||

P2::do
:: x==0 -> y=y+1
:: x==1 -> break

od

x=0,y=0

x=0,y=1
x=1,y=0

x=1,y=1
x=0,y=2

x=1,y=2
Under fairness assumption (any of the four defined),
P1 will execute the assignment, and consequently, P2 will terminate.
All executions are finite and there are infinitely many of them, and
infinitely many states.
Thus, an execution tree (the state space) will potentially look like the
one on the right, but with infinitely many states, finite branching and
only finite sequences. But according to König’s Lemma there is no
such tree!

173

Model Checking under fairness

 Instead of verifying that the program
satisfies , verify it satisfies fair

 Problem: may be inefficient. Also
fairness formula may involves special
arrangement for specifying what exec
means.

 May specialize model checking
algorithm instead.

174

Model Checking under Fairness

Specialize model checking. For weak process
fairness: search for a reachable strongly
connected component, where for each
process P either

 it contains on occurrence of a transition
from P, or

 it contains a state where P is disabled.

 Weak transition fairness: similar.

 Strong fairness: much more difficult
algorithm.

175

Abstractions

(Book: Chapter 10.1)

176

Problems with software
analysis

 Many possible outcomes and
interactions.

 Not manageable by an algorithm
(undecideable, complex).

 Requires a lot of practice and ingenuity
(e.g., finding invariants).

177

More problems

 Testing methods fail to cover potential errors.

 Deductive verification techniques require

 too much time,

 mathematical expertise,

 ingenuity.

 Model checking requires a lot of time/space and may
introduce modeling errors.

178

How to alleviate the
complexity?

 Abstraction

 Compositionality

 Partial Order Reduction

 Symmetry

179

Abstraction

 Represent the program using a smaller
model.

 Pay attention to preserving the checked
properties.

 Do not affect the flow of control.
 [Abstract interpretation (using Galois connection) is

equivalent to simulation!]

180

Main idea

 Use smaller data objects.

x:= f(m)

y:=g(n)

if x*y>0 then …

else …

x, y never used again.

181

How to abstract?

 Assign values {-1, 0, 1} to x and y.

 Based on the following connection:
sgn(x) = 1 if x>0,

0 if x=0, and
-1 if x<0.

sgn(x)*sgn(y)=sgn(x*y).

182

Abstraction mapping

 S - states, I - initial states. L(s) - labeling.

 R(S,S) - transition relation.

 h(s) maps s into its abstract image.
Full model -h Abstract model

I(s)  I(h(s))
R(s, t)  R(h(s),h(t))

L(h(s))=L(s)

183

Traffic light

example

go

stop

stop

184

go

stop

stop

go

stop

185

What do we preserve?

go

stop

stop

go

stop

Every execution of the
full model can be
simulated by an
execution of the reduced
one.

Every LTL property that
holds in the reduced
model hold in the full
one.

But there can be
properties holding for the
original model but not
the abstract one [false
negatives].

186

Preserved:
[](go->O stop)

go

stop

stop

go

stop

Not preserved:

[]<>go

Counterexamples

need to be

checked.

187

Symmetry

 A permutation is a one-one and onto function
p:AA.
For example, 13, 24, 31, 45, 52.

 One can combine permutations, e.g.,
p1: 13, 21, 32
p2: 12, 21, 33
p1@p2: 13, 22, 31

 A set of permutations with @ is called a
symmetry group.

188

Using symmetry in analysis

 Want to find some symmetry group such
that for each permutation p in it,
R(s,t) if and only if R(p(s), p(t))
and L(p(s))=L(s).

 Let K(s) be all the states that can be
permuted to s. This is a set of states such
that each one can be permuted to the other.

189

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
L0,NC1

Turn=1
NC0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

init

190

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

init

The quotient model

191

Homework: what is preserved in the
following buffer abstraction? What is not
preserved?

e

empty

quasi

full

q

q

q

f

192

BDD representation

193

Computation Tree Logic
. . .

. . .

. . .

. . .

p p

p

. . .

. . .

. . .

. . .

EG p

p p p p

p

p p

AF p

194

Computation Tree Logic

q q

q

p

. . .

. . .

. . .

. . .

p

q

p

. . .

. . .

. . .

. . .

E pUq

p

A pUq

195

Example formulas

CTL formulas:

 mutual exclusion: AG (cs1  cs2)

 non starvation: AG (request  AF
grant)

 “sanity” check: EF request

196

Model Checking M |= f

[Clarke, Emerson, Sistla 83]

 The Model Checking algorithm works
iteratively
on subformulas of f , from simpler
subformulas to more complex ones

 When checking subformula g of f we assume
that all subformulas of g have already been
checked

 For subformula g, the algorithm returns

the set of states that satisfy g (Sg)

 The algorithm has time complexity:
O(|M||f|)

197

Model checking f = EF g

Given a model M= < S, I, R, L >

and Sg the sets of states satisfying g in M

procedure CheckEF (Sg)

Q := emptyset; Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q  { s | s' [R(s,s’)  Q(s’)] }

end while

Sf := Q ; return(Sf)

198

g

g

g

f

f

f

f

f

f

f

Example: f = EF g

199

Model checking f = EG g

CheckEG gets M= < S, I, R, L > and Sg

and returns Sf

procedure CheckEG (Sg)

Q := S ; Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q { s | s' [R(s,s’)  Q(s’)] }

end while

Sf := Q ; return(Sf)

200

g

g

g

g

g

g

Example: f = EG g

201

Symbolic model checking
[Burch, Clarke, McMillan, Dill 1990]

If the model is given explicitly (e.g. by
adjacent

matrix) then only systems with about ten
Boolean

variables (~1000 states) can be handled

Symbolic model checking uses

Binary Decision Diagrams (BDDs)

to represent the model and sets of states. It
can handle

systems with hundreds of Boolean variables.

202

Binary decision diagrams
(BDDs) [Bryant 86]

 Data structure for representing
Boolean functions

 Often concise in memory

 Canonical representation

 Boolean operations on BDDs can be
done in polynomial time in the BDD
size

203

 Assume that states in model M are
encoded by {0,1}n and described by
Boolean variables v1...vn

 Sf can be represented by a BDD over
v1...vn

 R (a set of pairs of states (s,s’))
can be represented by a BDD over
v1...vn v1’...vn’

BDDs in model checking

204

BDD definition

 A tree representation of a Boolean formula.

 Each leaf represents 0 (false) or 1 (true).

 Each internal leaf represents a node.

 If we follow a path in the tree and go from a
node left (low) on 0 and right (high) on 1, we
obtain a leaf that corresponds to the value of
the formula under this truth assignment.

205

Example

a

b c

c c b b

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 0 0 11 1 0 1

206

OBDD: there is some fixed appearance
order between variables, e.g., a<b<c

(a/\(b\/¬c))\/(¬a/\(b/\c))

a

b b

c c c c

0 0 0 11 0 1 1

207

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c))

0 0 0 11 0 1 1

In addition, remove nodes with
identical children (low(x)=high(x)).

208

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c)) 0 1

Unify isomorphic subtrees. Shortcut nodes
with identical children (low(x)=high(x)).Apply
bottom up until not possible.

209

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c c c

(a/\(b\/¬c))\/(¬a/\(b/\c))
0 1

Unify isomorphic subtrees. Shortcut nodes
with identical children (low(x)=high(x)).Apply
bottom up until not possible.

210

In reduced form: combine all leafs with
same values, all isomorphic subgraph.

a

b b

c c

(a/\(b\/¬c))\/(¬a/\(b/\c))
0 1

Unify isomorphic subtrees. Shortcut nodes
with identical children (low(x)=high(x)).Apply
bottom up until not possible.

211

Example, even parity, 3 bits

a

b b

c c c c

1 0 0 01 1 1 0

212

Apply reduce

a

b b

c c c c

01

213

Apply reduce

a

b b

c c c c

01

214

Apply reduce

a

b b

c c c

01

215

Apply reduce

a

b b

c c c

01

216

Apply reduce

a

b b

c c

01

217

f[0/x], f[1/x] (“restrict” algorithm)

 Obtain the replacement of a variable x by 0
or 1, in formula f, respectively.

 For f[0/x], incoming edges to node x are
redirected to low(x), and x is removed.

 For f[1/x], incoming edges to node x are
redirected to high(x), and x is removed.

 Then we reduce the OBBD.

218

Calculate x

 x= [0/x]\/[1/x]

 Thus, we apply “restrict” twice to  and
then “apply” the disjunction.

219

Shannon expansion of Boolean
expression f.

 f=(¬x/\f[0/x])\/(x/\f[1/x])

 Thus, f#g, for some logical operator # is

f#g=(¬x/\f#g [0/x])\/(x/\f#g [1/x])=

(¬x/\f [0/x]#g [0/x])\/(x/\f [1/x]#g[1/x])

220

Now compute f#g recursively:
Let rf be the root of the OBDD for f, and rg be the root

of the OBDD for g.

 If rf and rg are terminals, then apply rf#rg and put
the result.

 If both roots are same node (say x), then create a
low edge to low(rf)#low(rg), and a high edge to
high(rf)#high(rg).

 If rf is x and rg is y, and x<y, there is no x node in
g, so g=g[0/x]=g[1/x]. So we create a low edge to
low(rf)#g and a high edge to high(rf)#g. The
symmetric case is handled similarly.

 We reduce.

221

Same subgraphs are not
needed to be explored again
(use memoising, i.e.,
dynamic programming,
complexity: exponential

2xmultiplications of sizes.

R1,S1

R6,S5

R2,S3 R3,S2

R3,S3 R4,S3

R5,S4

R6,S3

R4,S3

R4,S3

R5,S4 R6,S5

R6,S5

R6,S4

R6,S5

R5,S4 R6,S5

x

z

t

z

y

x

t

0 1 0 1

R1

R3

R2

R5

R6

R4

S1

S3

S2

S4 S5

x

z

z tt

t
t

y

222

Same subgraphs are not
needed to be explored again

(use memoising, i.e.,

dynamic programming,
complexity: exponential

2xmultiplications of sizes.

R1,S1

R6,S5

R2,S3 R3,S2

R3,S3 R4,S3

R5,S4

R6,S3

R4,S3

R4,S3

R5,S4 R6,S5

R6,S5

R6,S4

R6,S5

R5,S4 R6,S5

x

z

t

z

y

x

y

0 1 0 1

R1

R3

R2

R5

R6

R4

S1

S3

S2

S4 S5

x

z

z tt

t
t

y

223

Symbolic Model Checking

 Characterize CTL formulas using fixpoints.

 AF= \/AX AF

 EF= EX EF  Z.EX Z

 AG= /\AX AG

 EG= EX EG Z.EX Z

 AU = \/(/\AXU)

 EU =  (EXU) Z.(EXZ)

 AR = /\(\/AXR)

 ER = (EXR)  Z.(EXZ)

224

Representing the successor
relation formula R

 A relation between the current state and the
next state can be represented as a BDD with
prime variables representing the variables at
next states.

 For example:
p/\¬q/\r/\¬p’/\q’/\r’ says that the current state
satisfies p/\¬q/\r and the next state satisfies
¬p/\q/\r. (typically, for one transition,
represented as a Boolean relation).

 If ti represents this relation for transition i, we

can write for the entire code R=\/i ti.

225

Calculating (Z) for
(Z)=EX Z

 Z is a BDD.

 Rename variables in Z by their primed
version to obtain BDD Z’.

 Calculate the BDD R/\Z’.

 Let y1’…yn’ be the primed variables,
Then calculate the BDD
B=y1’… yn’ R/\Z’ to remove primed
variables.

 Calculate the BDD B.

226

Model checking Z  (least fixed point)
For example, = EX Z
For formulas with main operator .

procedure Check LFP ()

Q :=False; Q’ := (Q) ;

while Q  Q’ do

Q := Q’;

Q’ := (Q) ;

end while

return(Q)

227

Model checking Z  (Greatest fixed point)
For example, = (EX Z)
For formulas with main operator .

procedure Check GFP ()

Q :=True; Q’ := (Q) ;

while Q  Q’ do

Q := Q’;

Q’ := (Q) ;

end while

return(Q)

