
Practical Program Analysis and Synthesis

Eran Yahav
The Technion, Haifa, Israel

Software is becoming increasingly complex. For system-level programmers, the transition of hard-
ware providers to multi-core architectures exposes new sources of complexity. Additional com-
plexity is introduced by systems using heterogenous concurrency and massively data-parallel ar-
chitectures such as GPUs. For application-level programmers, the proliferation of libraries and
frameworks, intended to reduce complexity, often requires programmers to be aware of intricate
library internals for effective and correct usage of the library. Furthermore, despite the ability to
hide some aspects of concurrency in the library, even application- level programmers might still
need to reason about atomicity (e.g.,[8]).

Despite significant progress in automatic checking and verification tools (e.g., [2, 1]), such tools
can only be applied after the code is written and may be broken in a fundamental manner.
This motivates us to explore software synthesis techniques that assist a programmer during the
development process.

In this lecture series, we will focus on synthesis techniques that use abstract interpretation [3].
Abstract interpretation provides a framework for sound static (compile-time) reasoning about
realistic programs by over-approximating their runtime behaviors. We will first survey basic ideas
from abstract interpretation in the context of practical program analysis, and then employ these
ideas in program synthesis.

We will present a framework for synthesizing efficient synchronization in concurrent programs,
a task known to be difficult and error-prone when done manually. The framework is based on
abstract interpretation and can infer synchronization for infinite state programs. Given a program,
a specification, and an abstraction, we infer synchronization that avoids all (abstract) interleavings
that may violate the specification, but permits as many valid interleavings as possible. We will
show application of this general idea for automatic inference of atomic sections [9] and memory
fences [4-6] in programs running over relaxed memory models. Then, we will present a framework
for synthesis of code using libraries, based on combination of results from semantic code search
[7]. Finally, we will discuss some interesting directions for future research.

References

[1] T.Ball, R.Majumdar, T.Millstein, S.K.Rajamani. Automatic Predicate Abstraction of C Pro-
grams. In: Procs. of the ACM SIGPLAN Conference PLDI ’01, pp. 203–213, ACM, 2001.

[2] B.Blanchet, P.Cousot, R.Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, X.Rival. A
Static Analyzer for Large Safety-critical Software. In: Procs. of the ACM SIGPLAN Conference
PLDI’03, pp. 196–207, ACM, 2003.

[3] P.Cousot, R.Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In: Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
238–252, ACM, 1977.

[4] M.Kuperstein, M.Vechev, E.Yahav. Automatic Fence Inference. In: Procs of the FMCAD’10,
pp. 111–119, 2010.

26



[5] M.Kuperstein, M.Vechev, E.Yahav. Partial-coherence Abstractions for Relaxed Memory Mo-
dels. In: Procs. of the PLDI’11. pp. 187–198, 2011.

[6] F.Liu, N.Nevev, N.Prisadnikov, M.Vechev, E.Yahav. Dynamic Synthesis for Relaxed Memory
Models. In: Procs. of the PLDI’12, pp. 429–440, 2012.

[7] A.Mishne, S.Shoham, E.Yahav. Typestate-based Semantic Code Search over Partial Programs.
In: Procs. of the OOPSLA’12, pp. 997–1016, 2012.

[8] O.Shacham, N.Bronson, A.Aiken, M.Sagiv, M.Vechev, E.Yahav. Testing Atomicity of Compo-
sed Concurrent Operations. In: Procs. of the OOPSLA ’11, pp. 51–64, 2011.

[9] M.Vechev, E.Yahav, G.Yorsh. Abstraction-guided Synthesis of Synchronization. In: Procs. of
the POPL ’10, pp. 327–338, 2010.

27


