UNIVERSITY OF DASH: A New Language for Declarative
N WATERLOO Behavioural Requirements with Control State Hierarchy

Jose Serna, Nancy A. Day, and Sabria Farheen
David R. Cheriton School of Computer Science
{Jserna, nday, sfarheen}@uwaterloo.ca

&

The Language [ fesngsysem State Hierarchy
Kitchen
4 Furnace N \ —n=)
* A declarative language for describing formal «. — *  DAHS has direct support for control state hierarchy:
. . edroom . .
behavioural models of requirements — — \ . AND-, OR- and basic states can be defined
furnaceFaut | (-~~~ " "~ "---- -
* The name comes from Declarative Abstract State activate P— | [ LivingRoom :
Hierarchy pp— * In each state, declarations of system elements can be
- — defined using Alloy syntax
deactivate ,» ¥~ | b= -
_ Furnace
*  Adds hierarchical, labelled control states to the Alloy deactivate FumaceStartUpTime / umaceRunming T oo . . | |
Language L maceReset || . DASH uses primed variables to refer to their values in
{ Controllr the next state
N y oo
*  Supports user-defined and uninterpreted types and N 7\ g
operations, and first order logic formulae in the etioct st oo gy e U »  The state hierarchy is used as a scoping mechanism for
conditions and actions of state machines creating partitioned namespaces
conc state HeatingSystem {
valvePosition: Room -> ValvePosition
. rts new w f factorin terning, and i : i . .
oupports new ways of factoring, pat & desiredremp: Room -> 1nt * The init and default keywords are used to define
layering abstractions to describe and systematically actualTemp: Room -> In .
. . ¢ del occupied: Room the initial state of the system and default states of the
organize transitions of a mode requestHeat: Room hierarchy
event activate {}
event deactivate {} . L. ) ] '
* Actions and conditions are expressed in first order logic
Td action adjValve [ . . '
Transrtlons all r:occupied | r.actualTemp < r.desiredTemp => lnCIUdlng quantzfzers
r.valvePosition' = OpenPosition Semantics
. . . . 1 {}
* Behavioural models are described using transition o
relations, DASH adds support for user-level condition roomsheedHeat [
: imiti : it some requestheat « The definition and formalization of the semantics for
abstractions and primitives to describe the transitions 1 ) ¢ del on a
DASH is work in progress
init {
: o <y all r: Room | r.valvePosition = ClosedPosition
DASH has multiple ways of factoring transitions. They ) ‘ o . . .
can be factored by states, events, actions and conditions * A final set of tra‘n51t1ons 15 obtamed by flattening the
conc state Controller { effect of factoring, expanding the patterns, and
e Erron g g combining layers to complete the definitions
event deactivate {
. . tate O
trans offl {from Actlyatlng goto Off} > jeiaugt{state Tdle{
) trans off2 {from Running goto Off} trans t1 { when roomsNeedHeat goto HeaterActive send activate } o The meaning of a DASH model is determined from the
} trans t2 { from HeaterActive when (not roomsNeedHeat) send deactivate } final set Of transitions that are combined to create a next
state HeaterActivef state relation. Together, the next state relation and the
- Patterning defines a set of transitions in a single ‘:i:iglﬁei:::ux;g;1”3Heate"{} predicates that determine initial conditions, form a
statement. In the from and goto parts of a transition, a } symbolic Kripke Structure
list of state names can be proylded. Additionally, * can trans t3 { on heatSwitchOff goto OFf send deactivate ) Future Work
be used to represent all states in the current scope trans t4 { on furnaceFault goto Error }
}
}
«  Layering facilitates aspect-oriented modelling. Parts of conc state Bedroom { * Add more modularity to th? lqnguage, including
transitions can be defined in different places, then the default state NoHeatEequestested {3 parameterized states and quantification over states
R state HeatRequested
descriptions are merged together to create a complete default state IdleHeating{}
description of the transitions state WaltForCool{ . « Translate the models to Alloy and eventually to SMT
trans t5 { on waitedForCool do adjValve }
addon (do incErrorCounter) ! solvers
}
to (from * goto Error)
addon (do incErrorCounter) to t4 } )

*  Explore model checking of DASH models



