
The Language

• A declarative language for describing formal
behavioural models of requirements

• The name comes from Declarative Abstract State
Hierarchy

• Adds hierarchical, labelled control states to the Alloy
Language

• Supports user-defined and uninterpreted types and
operations, and first order logic formulae in the
conditions and actions of state machines

• Supports new ways of factoring, patterning, and
layering abstractions to describe and systematically
organize transitions of a model

Future Work

• Add more modularity to the language, including
parameterized states and quantification over states

• Translate the models to Alloy and eventually to SMT
solvers

• Explore model checking of DASH models

State Hierarchy

• DAHS has direct support for control state hierarchy:
AND-,OR- and basic states can be defined

• In each state, declarations of system elements can be
defined using Alloy syntax

• DASH uses primed variables to refer to their values in
the next state

• The state hierarchy is used as a scoping mechanism for
creating partitioned namespaces

• The init and default keywords are used to define
the initial state of the system and default states of the
hierarchy

• Actions and conditions are expressed in first order logic
including quantifiers

DASH: A New Language for Declarative
Behavioural Requirements with Control State Hierarchy

Jose Serna, Nancy A. Day, and Sabria Farheen
David R. Cheriton School of Computer Science

{jserna, nday, sfarheen}@uwaterloo.ca

abstract sig ValvePosition {}
abstract sig Room {}
...
conc state HeatingSystem {
valvePosition: Room -> ValvePosition
desiredTemp: Room -> Int
actualTemp: Room -> Int
occupied: Room
requestHeat: Room

event activate {}
event deactivate {}

action adjValve [
all r:occupied | r.actualTemp < r.desiredTemp =>

r.valvePosition' = OpenPosition
] {}

condition roomsNeedHeat [
some requestHeat

] {}

init {
all r: Room | r.valvePosition = ClosedPosition

}

conc state Controller {
default state Off { }
state Error { }
state On {
default state Idle{
trans t1 { when roomsNeedHeat goto HeaterActive send activate }
trans t2 { from HeaterActive when (not roomsNeedHeat) send deactivate }

}
state HeaterActive{
default state ActivatingHeater{}
state HeaterRunning{}

}

trans t3 { on heatSwitchOff goto Off send deactivate }
trans t4 { on furnaceFault goto Error }

}
}

conc state Bedroom {
default state NoHeatRequestested {}
state HeatRequested {
default state IdleHeating{}
state WaitForCool{
trans t5 { on waitedForCool do adjValve }

}
}

}
}

Transitions

• Behavioural models are described using transition
relations, DASH adds support for user-level
abstractions and primitives to describe the transitions

• DASH has multiple ways of factoring transitions. They
can be factored by states, events, actions and conditions

• Patterning defines a set of transitions in a single
statement. In the from and goto parts of a transition, a
list of state names can be provided. Additionally, * can
be used to represent all states in the current scope

• Layering facilitates aspect-oriented modelling. Parts of
transitions can be defined in different places, then the
descriptions are merged together to create a complete
description of the transitions

event deactivate {
trans off1 {from Activating goto Off}
trans off2 {from Running goto Off}

}

addon (do incErrorCounter)
to (from * goto Error)

addon (do incErrorCounter) to t4

Semantics

• The definition and formalization of the semantics for
DASH is work in progress

• A final set of transitions is obtained by flattening the
effect of factoring, expanding the patterns, and
combining layers to complete the definitions

• The meaning of a DASH model is determined from the
final set of transitions that are combined to create a next
state relation. Together, the next state relation and the
predicates that determine initial conditions, form a
symbolic Kripke Structure

