Flow Interfaces

Compositional Abstractions for Concurrent Data Structures

Siddharth Krishna, Dennis Shasha, and Thomas Wies

Motivation

Verifying concurrent data structures by only reasoning about the small region modified by each thread (compositional reasoning).

Challenges

- Unbounded sharing and complex overlays
- Data invariants depend on global shape

Examples: Harris’ non-blocking list (below), B-link trees

Current approaches

- Separation logic (SL) based logics
- Inductive predicates to describe shape and data properties
- Example: list segments

 \[ls(x,y) = (x = y \land \text{emp}) \lor (\exists z. x \leftrightarrow z \land ls(z,y)) \]

- Problem 1: definition tied to traversal that visits every node exactly once
 - How do we describe Harris’ list?

- Problem 2: predicates and lemmas are data-structure-specific
 - List composition:

 \[ls(x,y) \land ls(y,z) \Rightarrow ls(x,z) \]
 - Sorted list segment with upper and lower bounds:

 \[ls(x,y,z,u) \land \exists v. x \leftrightarrow v \land ls(z,v,u) \]
 - Different composition:

 \[ls(x,y,z,w,u) \land v \leq w \Rightarrow ls(z,x,z,u) \]

Flows

Key idea: encode global data invariants as local conditions on the flow of nodes, an inductively computed quantity.

Example specification: nodes reachable from root form a tree Solution: compute number of paths from root to each node

Start with a flow domain \((D, \sqsubseteq, \cdot, 0, 1)\) – here use \(N\).

\[G = (N, e) \text{ is a flow graph} \]
- \(N\): finite set of nodes
- \(e\): labels edges from \(D\)

Given an inflow \(in: N \rightarrow D\), compute

\[\text{flow}(in,G) : N \rightarrow D \]

\[\text{flow}(in,G) = \text{lfp} \left(\lambda C. \text{in}(n) + \sum_{n' \in N} C(n') \cdot e(n',n) \right) \]

Example spec is now: \(\forall n \in N. \text{flow}(in,G)(n) \leq 1\)

Flow Interface Algebras

\((in,G)\) is a flow interface graph
- \(G\): partial flow graph with outgoing edges
- \(in\): inflow on \(G\)

Composition and decomposition:
- Defined inductively to preserve flows
- Example: \((in,G) = (in_2,G_2) \circ (in_1,G_1)\)

(Flow interface graphs, \(\circ\) is a separation algebra

\[\Rightarrow \text{Can use as semantic model for SL} \]

Application: Verifying Concurrent Dictionaries

We can prove memory safety and linearity of:
- Harris’ non-blocking singly linked list
- B+ trees with give-up based fine grained locking

Both use same flow abstraction and key invariants for linearity

Example: spec of B+ tree split method:

\[
\begin{align*}
\left[\text{in}(\text{p},\text{G}) \land \text{in}(\text{c},\text{L}) \right] \rightarrow \text{Gr}(G) \land \text{l}^0 = \{ r \Rightarrow (\text{KS},1) \} \}

\land \begin{aligned}
\text{if} &\ = e \land \text{l}^0_p \land (\text{b} \land \text{c}(\text{p},\text{c}) \land (\text{p} \land \text{c}(\text{c},\text{c})) \land \text{Gr}(\text{g})) \land \text{l}^0_m \land (\text{r} \Rightarrow (\text{KS},1)) \}
\end{aligned}
\end{align*}
\]

Highlights

- Separation logic based abstraction
- Handles unbounded sharing & overlays
- Local reasoning for shape and data
- Not tied to one traversal strategy
- Data-structure-agnostic composition and abstraction lemmas
- Simple correctness proofs for complex concurrent dictionary algorithms

Logic & Entailments

- Can use any concurrent SL-like logic
- To demonstrate, we use rely-guarantee separation logic (RGSep)
- We add new predicates
 - These are parameterized by the good condition

 \[\text{Gr}(f) \]

 Graph region satisfying interface \(f\)
 - Generic composition and decomposition:

 \[\text{Gr}(f) \land x \in 1^m \]

 \[\text{N}(x,I) \land \text{Gr}(I) \land I \in I_1 \oplus I_2 \] (DECOMP)

 \[\text{Gr}(I_1) \land \text{Gr}(I_2) \land I \in I_1 \oplus I_2 \]

 \[\text{Gr}(f) \] (COMP)

Some nice properties:
- \(\otimes\) is associative & commutative
- \(l_1 \cdot l_2 \land l_1 \leq l_2\)

Compositional Flow Interfaces

\[f = \text{fm}(G)(n, n_o) = \sum_{p \in N \land n_o} \text{pathprod}(p) \]

\[l = (in,f) \text{ is a flow interface} \]

Lift composition to interfaces: \(l_1 \oplus l_2\)

\[\{ (in,f) \}_\text{good} \text{ denotes all } (in,G) \text{ s.t.} \]

\[f \text{ is flow map of } G \]

\[\forall n \in G, \text{ good}(n, \text{flow}(in,G)(n), G|_n) \text{ holds} \]

Example:
- \(\text{good}(n, p, _) = p \leq 1\)