Formal Methods:
Model Checking and Other Applications

Orna Grumberg
Technion, Israel

Marktoberdorf 2017
Outline

• Model checking of finite-state systems

• Assisting in program development
 - Program repair
 - Program differencing
Why (formal) verification?

• **safety-critical applications**: Bugs are unacceptable!
 - Air-traffic controllers
 - Medical equipment
 - Cars

• Bugs found in later stages of design are expensive

• Hardware and software systems grow in size and complexity: Subtle errors are hard to find by testing

• Pressure to reduce time-to-market

 Automated tools for formal verification are needed
Formal Verification

Given
• a model of a (hardware or software) system and
• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a decidable one:
• Finite-state reactive systems
• Propositional temporal logics
Finite state systems - examples

• Hardware designs
• Controllers (elevator, traffic-light)
• Communication protocols (when ignoring the message content)
• High level (abstracted) description of non finite state systems
Properties in propositional temporal logic - examples

• mutual exclusion:
 \textit{always} \neg(cs_1 \land cs_2)

• non starvation:
 \textit{always} (request \Rightarrow \textit{eventually} granted)

• communication protocols:
 (\neg \textit{get-message}) \textit{until} send-message
Model Checking [CE81,QS82]

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns

yes, if the system has the property
no + Counterexample, otherwise
Model of a system
Kripke structure / transition system

Labeled by atomic propositions AP
(critical section, variable value...)

Reactive Systems
Temporal Logics

- **Temporal Logics**
 - Express properties of event orderings in time

- **Linear Time**
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

- **Branching Time**
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)
Propositional temporal logic

AP - a set of atomic propositions

Temporal operators:

- Gp: Always true
- Fp: Eventually true
- Xp: Next true
- pUq: p before q

Path quantifiers:

- A for all path
- E there exists a path
Model checking $AG \ p$ on M

- Iteratively compute the sets S_j of states reachable from an initial state in j steps.
- At each iteration check whether S_j contains a state satisfying $\neg p$.
 - If so, declare a failure.
- Terminate when all states were found.
 - A fixpoint has been reached.

$$S_k \subseteq \bigcup_{i=0}^{k-1} S_i$$
Mutual Exclusion Example

- Two processes with a joint Boolean signal `sem`
- Each process P_i has a variable v_i describing its state:
 - $v_i = N$ Non critical
 - $v_i = T$ Trying
 - $v_i = C$ Critical
Mutual Exclusion Example

- Each process runs the following program:

  ```
  P_i :: while (true) {
      if (v_i == N) v_i = T;
      else if (v_i == T && sem) { v_i = C; sem = 0; }
      else if (v_i == C) {v_i = N; sem = 1; }
  }
  ```

- The full program is: \(P_1 || P_2\)

- Initial state: \((v_1=N, v_2=N, \text{sem})\)

- The execution is interleaving
Mutual Exclusion Example

- $v_1 = N, v_2 = N,$ sem
- $v_1 = T, v_2 = N,$ sem
- $v_1 = N, v_2 = T,$ sem
- $v_1 = T, v_2 = T,$ sem
- $v_1 = C, v_2 = N,$ \neg sem
- $v_1 = T, v_2 = T,$ \neg sem
- $v_1 = C, v_2 = N,$ \neg sem
- $v_1 = T, v_2 = C,$ \neg sem
- $v_1 = N, v_2 = C,$ \neg sem
• We define atomic propositions: \(AP=\{C_1, C_2, T_1, T_2\} \)
• A state is marked with \(T_i \) if \(v_i = T \)
• A state is marked with \(C_i \) if \(v_i = C \)
• Property 1: $AG_\perp(C_1 \land C_2)$
• Property 1: $\text{AG}\downarrow(C_1 \land C_2)$

S_0
• Property 1: \(\mathcal{AG}(C_1 \land C_2) \)
• Property 1: $\AG_{\neg}(C_1 \land C_2)$
Property 1: $AG_\downarrow(C_1 \land C_2)$
• $M \models AG \rightarrow (C_1 \land C_2)$

$S_4 \subseteq S_0 \cup S_1 \cup S_2 \cup S_3$
• Property 2: $AG\downarrow(T_1 \land T_2)$
• Property 2: $AG^{\perp}(T_1 \land T_2)$
• Property 2: $AG^\bot(T_1 \land T_2)$
- $M \not\models AG \rightarrow (T_1 \land T_2)$
- *A violating state has been found*
• $\mathcal{M} \not\models AG \neg (T_1 \land T_2)$

Model checker returns a counterexample
Forward Reachability Analysis

- terminates when
 - either a bad state satisfying \(\neg p \) is found
 - or a fixpoint is reached: \(S_j \subseteq \bigcup_{i=0,j-1} S_i \)
Main limitation

The state explosion problem:

Space and time requirements grow with the size of the model
SAT-based model checking

- Translates the model and the specification to a propositional formula
- Uses efficient tools for solving the satisfiability problem

Since the satisfiability problem is \textbf{NP-complete}, SAT solvers are based on heuristics.
Bounded model checking (BMC) for checking AGp

• Given
 - A finite system \(M \)
 - A safety property \(\text{AGp} \)
 - A bound \(k \)

• Determine
 - Does \(M \) contain a counterexample to \(\text{AGp} \) of \(k \) transitions (or fewer)?
Bounded Model Checking (BMC) for checking AGp

- Unwind the model for k levels, i.e., construct all computations of length k

- If a state satisfying $\neg p$ is encountered, produce a counterexample; Otherwise, increase k

[BCCZ 99]
Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

The method is suitable for falsification, not verification
BMC for checking $\text{AGp (EF } \neg p \text{)}$

Input to BMC:

A system over variables $V = \{v_1, \ldots, v_n\}$, where

- $\text{INIT}(V)$ is a propositional formula representing the set of initial states

- $R(V, V')$ is a propositional formula representing the transition relation

A specification:

- $\neg p(V)$ is a propositional formula representing the set of states satisfying $\neg p$
• If \((f_M^k \land f_{\varphi}^k) \) is unsatisfiable:
 \(M \) has no counterexample of length \(k \)

• If \(k = 2^{|V|} \) then we can conclude \(M \models AGp \)
 - Too big - not practical

• The method is suitable for refutation
 - Bug finding
BMC for checking $\varphi = \neg AGp \equiv EF\neg p$

- $f^k_M (V_0, ..., V_k) =$
 $\text{INIT}(V_0) \land R(V_0, V_1) \land ... \land R(V_{k-1}, V_k)$

- Uses $k+1$ copies of $V = \{ v_1, ..., v_n \}$
- V_i represents the state after i transitions
BMC for checking $\varphi = \text{EF}\neg p$

- To check if p is violated within k steps:

$$f_{\varphi}^k (V_0, \ldots, V_k) = \neg p(V_0) \lor \ldots \lor \neg p(V_k) = V_{i=0\ldots k} \neg p(V_i)$$
BMC for checking $\varphi = \text{EF} \neg p$

- The iterative algorithm:

\[
\text{INIT}(V_0) \land \neg p(V_0)
\]

\[
\text{INIT}(V_0) \land R(V_0, V_1) \land \neg p(V_1)
\]

\[
\text{INIT}(V_0) \land R(V_0, V_1) \land R(V_1, V_2) \land \neg p(V_2)
\]

\[
\ldots
\]

\[
\text{INIT}(V_0) \land R(V_0, V_1) \land R(V_1, V_2) \land \ldots \land R(V_{k-1}, V_k) \land \neg p(V_k)
\]
Example - shift register of \(<x,y,z>\)

The set of states: all valuations of \(<x,y,z>\)

Transition relation:
\[
T(x,y,z,x',y',z') = x'=y \land y'=z \land z'=1
\]

Initial condition:
\[
INIT(x,y,z) = x=0 \lor y=0 \lor z=0
\]

Specification: \(AG (x=0 \lor y=0 \lor z=0)\)
Propositional formula for \(k=2 \)

\[
\begin{align*}
 f_{M,2} &= (x_0=0 \lor y_0=0 \lor z_0=0) \land \\
 & \quad (x_1=y_0 \land y_1=z_0 \land z_1=1) \land \\
 & \quad (x_2=y_1 \land y_2=z_1 \land z_2=1) \\
 f_{\varphi,2} &= V_{i=0,\ldots,2} (x_i=1 \land y_i=1 \land z_i=1)
\end{align*}
\]

Satisfying assignment: \(101 \ 011 \ 111 \)

This is a counterexample!
Verification with SAT solvers

Two successful methods for SAT-based verification are based on:

• Interpolation [McMillan 03]
• IC3 [Bradley 11]