Proof Support for Hybrid Systems Verification, |

Introduction to MetiTarski

Lawrence C Paulson, Computer Laboratory, University of Cambridge

Special function problems

0<tANO<vr = ((1.565 + .313v¢) cos(1.167)
+ (.01340 + .00268v ¢) sin(1.16¢)) exp(—1.34¢)
— (6.55 + 1.31vy) exp(—.318¢) + v, +10>0

0<xAx<280As?+c?P=1 =
1.51 — .023 exp(—.019x) — (2.35¢ + .42s) exp(.00024x) > —2

Both arising from hybrid systems verification
Both involving inequalities: safety constraints

And both proved automatically, in seconds!

An approach to prove such inequalities

1. Upper and lower bounds exist for many special functions.

2. These bounds are typically polynomials or rational functions
(oolynomial fractions).

3. The theory of real polynomial inequalities is decidable.
(Real Closed Fields, or RCF)

These problems can be reduced o

dectdable formulas!

Decidability of RCF via quantifier elimination

3z [az® 4 bz + ¢ = 0]
<—
b > 4ac A (c =0V a # 0 VHhb=>—4ae)
b#£0

- |f formula has no free variables, result is TRUE or FALSE

- Runtime doubly exponential in the number of quantifiers

- Implemented in QEPCAD, Z3 and the computer algebra
systems Maple and Mathematica

Sounds for the function In

+ Based on the continued fraction for In(x+1), which is
much more accurate than the Taylor expansion

x — 1
<lnx <x-—-1

X
(1+5x)(x—1) “Inx < x+5x—-1)
2x(2 + x) 2(2x + 1)

+ High accuracy requires high-degree polynomials

BSounds for the function exp

-+ Can be got from Taylor series or continued fractions.

- Some bounds are only good on a restricted interval,
We need several bounds to cover more of the real line.

Here are a few of the possibllities for exp.

exp(x)=1+x+---+x"/n! (n odd)

exp(x)<1+x+---+x"/n! (n even, x <0)

exp(x) =1/(1 —x+x°/2!-x>/3) (x < 1.596)

Other bounds for functions

sqrt: based on Newton’s method
sin & cos: based on Taylor series
tan-!: based on continued fractions

sin-!: based on its Maclaurin series

Limitations and quirks of bounds

Some are extremely -

accurate at first, but veer

away drastically. 'L 0.007

‘[10.006

Our upper bounds for the
exponential function have
limited ranges! \

- 0.005

- 0.004

- 0.003

- 0.002

-0.001

Tasks for a theorem proving algorithm

- Replace each occurrence of a function by a upper or lower
bound, depending on the context

-+ Select the best bounds, balancing simplicity against accuracy

- Combine bounds valid for short intervals to cover longer
intervals (by case analysis) and proving side conditions

- Reason in first-order logic using a suitable calculus

How do we do all this?

Um... hack a resolution prover?

Resolution theorem proving: refresher course

Based on a calculus for pure first-order logic
Proves theorems by contradiction

- Works with a set of disjunctions (clauses), viewed as a
glant conjunction, and tries to saturate this set

igh-performance implementations, e.g. Vampire

- A clean but efficient implementation (Metis), coded in
Standard ML.

A baby resolution example

AXIOMS
VX[P(X) = R(X) v Q(f(x))]

VX[R(X) = Q(X)]
VX[R(X) v f(X) = X]

Conjecture (to be negated)

Vx|[P(x) = Q)]

Resolution example in clause form (disjunctions)

—PX)! Rx)! Q(f(X))
—R(X) ! Q(X)

R(X)! f(X) =X

P(@ —Q(a)

And a resolution proof

conclusion premises

R(a)Vv Q(f(a)): Pla), =P(x)V R(x)V Q(f(x))
—R(a): —Q(a), =R(x)V Q(x)
Q(f(a)) :
f@)=a: RXx)V f(x)=x
Qa) :

—0Q(a)

Could resolution work for
SPecfa{ fMMCILl.OM Prob(ems?

P0ossible meanings of a lower bound

l4+x <expx

This yields four different implications!

expx <y — l+x <y
expx <y — l+x <y
y<l+x = y <expx
y=Il+x = y=expx

—ncoding a lower bound for resolution

Express 1+ x ! expx

as the two clauses

y<expxV-(y=1+x)
—(expx <y)VvVi4+x <y

there's a trick to do Hhis

without repeating ourselves

And let x < y abbreviate —(y < x)

Axioms to eliminate division

~(X<Y-Z)VX/Z<YVZ<O0
~(X<Y/Z)VX-Z<YVZ<O0
—~(X-Z<Y)VX<Y/ZVZ<O0
~(X/Z<Y)VX<Y-ZVZ<0

Special care needed, or these will

eliminate multiplication nstead!

Axioms defining the albsolute value function
-0<x)V]|x|=x O0<xVl|x|l=—x

then from exp |c| < y deduce two consequences:

O<cvexp(—c)<y
c<0OVexplc)<y

The tnference rule that accomplishes this
15 called paramodulation

Necessary modifications to resolution

- Algebraic simplification to canonical form, e.g. to identify

x>4+x x+xr x(x+1)

... and designed to isolate occurrences of functions
- A special inference rule to split up proaucts
- Integration with the RCF decision procedure:

Use it to delete any literal that is inconsistent with
known algebraic facts

A simple proof: VY x ‘ex — 1] < e\x\ — 1

hegating the claim

el < 1+ e — 1]
/ absolute value (neg)

absolute value (pos) O<cve “ <1+ \ec — 1]
€|C| <efve <1 abcsolutevalue (neg) .)
|l <e"VvO<cve "<2—e¢
lower bound: 1-c < e~

C
<eVve<0 l<e*vO<cve <l+c

absolute value, etc.

lower bound: 1+c < e

olcl

lower bound: 1+c¢ < e°
c <0 1 <e“Vv0O<c

z

c
upper bound (complicated!)

SZS output start CNFRefutation for abs-problem-11.tptp
cnf(lgen_le_neg, axiom, (X <=Y | ~ 1lgen(@, X, Y))).

cnf(leq_le

cnf(exp_lo
(X < -

cnf(exp_1lo
(~ lge
lgen(
cnf(exp_up
(0 < X
~ lge
lgen(
cnf(abs_no

cnf(abs_ne

fof(abs_pr
(! [X]

fof(subgoa
infere

fof(negate
infere

fof(normal
infere

fof(normal
infere

cnf(refute_© 6, plain, (exp(abs(skoXC1l)) - 1 < abs(exp(skoXCl) - 1)),
inference(canonicalize, [], [normalize © 1])).

cnf(refute_© 7, plain, (exp(al
inference(arithmetic, [],

cnf(refute_0_8, plain, (0 <= g
inference(subst, [], [abs]

cnf(refute_© 9, plain,
(exp(-skoXC1l) < 1 + abs(-1
1 + abs(-1 + exp(skoXC1))
introduced(tautology, [eql

cnf(refute_0_ 10, plain,
(exp(-skoXCl) < 1 + abs(-1
1 + abs(-1 + exp(skoXC1))
inference(resolve, [], [r§

cnf(refute_© 11, plain,
(exp(-skoXC1l) < 1 + abs(-1
inference(resolve, [], [ré

cnf(refute_0_12, plain,
(-1 + exp(skoXC1l * -1) < g
inference(arithmetic, [],

cnf(refute_© 13, plain,
(0 <= -1 + exp(skoXC1l) | 4
inference(subst, [], [abs]

cnf(refute_0 14, plain,
(-1 + exp(skoxCl * -1) < A
abs(-1 + exp(skoxCl)) !=
abs(-1 + exp(skoXCl)) <=
introduced(tautology, [eql

cnf(refute_© 70, plain,
(skoXC1 *
(-2304 +
skoXC1l *
(1152 +
skoXC1l * (-384 + skoXCl * (84 + skoXC1l * (-12 + skoXCl))))) <=
-2304 |
skoXC1l *
(4608 +
skoXC1l *
(-3456 +
skoXC1l *
(1536 +
skoXC1l * (-468 + skoXCl * (96 + skoXCl * (-13 + skoXC1)))))) <= @),
inference(decision, [], [refute_© 37])).

cnf(refute_0© 71, plain,
(skoXC1 *
(-2304 +
skoXC1l *
(1152 +
skoXC1l * (-384 + skoXCl * (84 + skoXCl * (-12 + skoXC1l))))) <=
-2304), inference(resolve, [], [refute_© 70, refute_0 69])).

cnf(refute_0© 72, plain,
(-2304 <
skoXC1 *
(-2304 +
skoXC1l *
(1152 + skoXC1l * (-384 + skoXC1l * (84 + skoXCl * (-12 + skoXC1)))))),
inference(decision, [], [refute_© 37])).

cnf(refute @ 73, plain, ($false),
inference(resolve, [], [refute © 71, refute 0 72])).
SZS output end CNFRefutation for abs-problem-11.tptp

Summary

