Proof Support for Hybrid Systems Verification, II

Ordered Resolution

Lawrence C Paulson, Computer Laboratory, University of Cambridge
A brief history of resolution

• Developed by J Alan Robinson in 1963

• Based on earlier work by Davis and Putnam

• Regarded by some (e.g. John McCarthy) as the key to Artificial Intelligence

• Overtaken by a revival of Davis-Putnam techniques during the 90s (today’s SAT and SMT solvers)
The basic resolution rule

\[
\begin{align*}
\frac{A \lor B}{(B \lor C)\sigma} & \quad (A\sigma = A'\sigma) \\
\frac{\neg A' \lor C}{(B \lor C)\sigma}
\end{align*}
\]

Complementary atomic formulas are unified.

The intermediate formula disappears; the substitution, \(\sigma\), affects the conclusion.
A resolution step

\[R(f(X), X) \lor P(X) \]
\[\neg R(Y, 1) \lor Q(Y) \]

identify complementary literals

\[R(f(1), 1) \lor P(1) \]
\[\neg R(f(1), 1) \lor Q(f(1)) \]

unify and substitute

\[X \mapsto 1 \]
\[Y \mapsto f(X) = f(1) \]

\[P(1) \lor Q(f(1)) \]
The saturation algorithm ("Otter loop")

At first, all clauses belong to the passive set. Then loop:

1. **Select** a clause for resolution. Move it to the active set.

2. **Perform all inferences** between the current clause and any active clause.

3. **Simplify** the new clauses. Add them to passive.

Repeat until contradiction found or passive = {}.
Resolution data flow

- **Problem in**
- **Passive clause set**
- **Selected clause**
- **Active clause set**

- **New clauses**
- **Empty clause?**
- **Simplification**
- **Deduced clauses**
- **Inference**

- **DONE!**
- **Give up**

- **No more?**
Completeness

• Most resolution calculi are complete: if a proof exists, it will be found in finite time.

• Immense theoretical importance (as a sanity check)

• Few practical implications: the runtime is unlimited.

Sacrificing completeness is an implementation decision!
Selecting a clause

- A common heuristic is to choose the lightest weight
 - the sum of the weights of the constants in the clause
 - penalising clauses that are too long
 - ... or that contain “difficult” constants such as exp
- Must be fair: every clause is selected eventually (or else, reject completeness, even discarding very heavy clauses)
The problem of redundancy

• If there are n clauses, there are $O(n^2)$ pairs to check

• Within a clause, every literal will be complementary to literals in other clauses

• The number of possible combinations is exponential, but a proof requires only one!
An example with threefold symmetry

\begin{align*}
P &\lor Q \lor R \\
\neg P &\lor Q \\
\neg Q &\lor R \\
\neg R &\lor P \\
\neg P &\lor \neg Q \lor \neg R
\end{align*}
Ordering constraints on literals in a clause

• Within each clause, prioritise certain literals
 • typically the “most difficult” literals
 • no other literals in a clause can be resolved

• mainly based on syntactic term orderings
Reduction orderings on terms

- Relation > is *well-founded* if no infinite chains $t_0 > t_1 > \ldots$

- It is *closed under substitution* if $t > u$ implies $C[t] > C[u]$

- *Reduction orderings* satisfy both properties.
 - Recursive path ordering
 - **Knuth-Bendix ordering (KBO)**
 - Used to *constrain resolution* and to *orient equations*.
Knuth-Bendix ordering

• Choose an order $<$ on the function/predicate symbols, the precedence

• Choose weights for the symbols (these are separate from the weights used for clause selection)

• The weight of a term is the obvious recursive summation

• Define $\text{occ}(x,t) = \# \text{ of occurrences of } x \text{ in } t$
Knuth-Bendix ordering: the details

$t \succ_{\text{kbo}} u$ if $\text{occ}(x,t) \geq \text{occ}(x,u)$ for all variables x in t, u AND

1. $\text{weight}(t) > \text{weight}(u)$ OR

2. $\text{weight}(t) = \text{weight}(u)$ AND

 a. $f > g$, comparing the head function symbols by precedence OR

 b. $f = g$, the head function symbols match and KBO holds on the arguments lexicographically
What was that again?

compare weights!

if equal, compare head functions by precedence

if identical, compare the arguments recursively

But most important: compare the variable occurrences!

This will cause problems later…
The **ordered** resolution rule

\[
\frac{A \lor B}{(B \lor C)\sigma} \quad (A\sigma = A'\sigma)
\]

where the complementary literals are both **maximal** in their clauses (after unification)

Can impose further constraints, such as *negative selection*
Our example with clause weights and ordering restrictions
And the **one** possible resolution proof

Precedences are $P < Q < R$

Weights are $P=1$, $Q=2$, $R=3$

(For both KBO and clause selection)
Benefits of the heuristics and constraints

- *much smaller* search space
- *focused* on the *simplest* (most promising) clauses
- within them, only the *most difficult* literals can be resolved
- for MetiTarski:
 - focuses on clauses containing the *fewest* functions
 - works to eliminate the *remaining* functions
The ordered paramodulation rule

\[
\frac{t = u \lor B}{(A[u] \lor B \lor C)\sigma} \quad (t\sigma = t'\sigma)
\]

a generalisation of rewriting: the equality is applied after unification

ordering constraint: the replacement term is no larger, \(u\sigma \not\succ t\sigma \)

a complete treatment of equality
Resolution calculi enjoy strong theoretical properties, such as completeness.

A well-established algorithm saturates the set of clauses in search for contradiction.

Heuristics exist to focus on the most promising clauses.

Ordering constraints focus on the “most difficult” literals in a clause.