Proof Support for Hybrid Systems Verification, III

Advanced Refinements to Resolution

Lawrence C Paulson, Computer Laboratory, University of Cambridge
A more advanced Knuth-Bendix ordering

- KBO is popular in resolution theorem proving
 - it is efficient
 - and prefers \textit{smaller} terms
- but if we want to eliminate functions like \exp, we must be prepared to accept \textit{larger} terms
Example: a lower bound for \(\exp \)

We have the simple \(1 + x \leq \exp x \)

from which we obtain, since \(x < y \) denotes \(\neg(y \leq x) \),

the clauses

\[
\begin{align*}
 y \leq \exp x & \lor y > 1 + x \\
 \exp x > y & \lor 1 + x \leq y
\end{align*}
\]

the \(\exp \) literals dominate, according to KBO, and are given priority. **BUT ...**
Another lower bound for \exp

\[
\left(1 + \frac{x}{3} + \frac{x^2}{18} + \frac{x^3}{162} + \frac{x^4}{1944} + \frac{x^5}{29160}\right)^3 \leq \exp x
\]

from which we obtain…

\[y \leq \exp x \lor y > \left(1 + \frac{x}{3} + \frac{x^2}{18} + \frac{x^3}{162} + \frac{x^4}{1944} + \frac{x^5}{29160}\right)^3\]

and KBO doesn’t like the multiple occurrences of x!
Possible extensions to KBO, I

Term weights could be *transfinite ordinals*:

\[
1 < 2 < \cdots < n < \cdots < \omega \\
< \omega + 1 < \cdots < \omega + n < \cdots < \omega^2 \\
< \omega^2 + 1 < \omega^3 < \cdots < \omega n < \cdots < \omega^2 \\
< \omega^2 + \omega < \omega^3 < \omega^4 < \cdots < \omega^n < \cdots < \omega^\omega < \cdots
\]

Intuitively, these are *nested lists* of integers, giving us an unlimited system of priorities for function symbols.

But weight calculations would become expensive!
Possible extensions to KBO, II

Refining the concept of number of occurrences

what if we counted $\exp x$ as having 150 occurrences of x?

This is called a subterm coefficient for \exp, a simple modification of the weight calculation.

ω would be better, but ordinal calculations are inefficient.

Weights are determined by experimentation, coefficients simply by inspection.
Next idea: splitting
Case-splitting in resolution

What is it?

splitting a clause in half — doing two separate refutations

When can you do it?

only when variables can be partitioned

Why would you do it?

shorter clauses yield shorter proofs

Why in MetiTarski?

hand simulation suggested it was necessary
The clause $A(x) \lor B(y)$

is logically equivalent to $(\forall x. A(x)) \lor (\forall y. B(y))$

- Splitting isn’t necessary but it’s often powerful
- Both halves of the clause must be nontrivial
- Different from SAT-solving, but shared ideas
Intelligent backtracking

- The first case is proved without using $A(x)$
- Therefore the proof does not need $A(x) \lor B(y)$
- So the second proof is skipped!
- (a key refinement in SAT-solving, too)
How to implement splitting?

The **hard** way, with a “split stack” to manage backtracking and restore data structures

first implemented in SPASS

The **easy** way, with new predicate symbols instead of backtracking

No fancy data structures: resolution does all the work

Splitting \textbf{without} backtracking

The clause $A(x) \lor B(y)$ is split into two clauses:

$$A(x) \lor p \quad B(y) \lor \neg p$$

And then, give it to normal resolution… but will it work?

\textit{parallel derivation (bad!)}

\textit{serial derivation}
Ordering constraints for splitting

- The “split labels” \(p \) are made *minimal* so that they persist
- But negated labels \(\neg p \) are made *maximal*
 - then a clause containing \(\neg p \) can *only* resolve with \(p \)
 - *completely blocking* the clause until \(p \) is proved
Further refinements of splitting

- **Hyper-splitting**: splitting the clause into three or more parts in a single step

- **Naming heuristic**: reusing a label when splitting on the same formula

- **MetiTarski-specific aspects**:
 - only *ground* clauses are split (these are common)
 - both cases of the split must involve a *special function*
Combining resolution with a decidable theory

• An old issue: resolution is good with quantifiers but bad with arithmetic and other theories

• Many have tried to combine resolution with decision procedures. Two notable examples:

Literal deletion by decision procedure

- A list of “relevant” clauses is maintained. (For MetiTarski: containing just + − × = ≤ and no variables.)

- Every literal of each new clause is examined.

- A literal will be deleted if—according to the decision procedure—it is inconsistent with its context.

- MetiTarski also uses the decision procedure to detect redundant clauses (those deducible from known facts).

Perhaps other decision procedures could similarly be integrated with resolution.
Examples of algebraic literal deletion

- *Unsatisfiable* literals such as $p^2 < 0$ are deleted.

- If $x(y+1) > 1$ has previously been deduced, then $x=0$ will be deleted.

- A literal’s **context** includes the *negations of adjacent literals* in the same clause

 - $z > 5$ is deleted from $z^2 > 3 \lor z > 5$

 - … because $\exists z [z^2 \leq 3 \land z > 5]$ reduces to FALSE.
Horner normal form: a canonical form for arithmetic

A recursive representation of polynomials

\[a_n x^n + \cdots + a_1 x + a_0 \]
\[= a_0 + x(a_1 + x(a_2 + \cdots x(a_{n-1} + x a_n))) \]

\[3xy^2 + 2x^2yz + zx + 3yz \]
\[= [y(z3)] + x([z1 + y(y3)] + x[y(z2)]) \]

A polynomial in \(x \)

where the coefficients are polynomials in \(y \) …

Highly unnatural, but a basis for simplification
Formula simplification: finishing up

- Finally we simplify the Horner normal form, using laws like $0 + z = z$ and $1 \times z = z$.

- The maximal “foreign” term, say $\ln E$, is isolated (if possible) on one side of an inequality.

- Nested quotients are flattened to *rational functions*:

$$\left(\frac{y}{x} \right) \frac{1}{x + \frac{1}{x}} = \frac{x^2}{y(x^2 + 1)}$$
One last thing: dividing out products

- Given a clause of the form \(f(t) \cdot u \leq v \lor C \)
- deduce the three clauses \(f(t) \leq v/u \lor u \leq 0 \lor C \)
 \[0 \leq v \lor u \neq 0 \lor C \]
 \[f(t) \geq v/u \lor u \geq 0 \lor C \]

- Actually a new inference rule! But needed when a function is multiplied by another term.
Summary

Subterm coefficients are a useful and cheap extension of KBO.

Splitting can be done simply by hacking the ordering.

Literal deletion is one way to augment resolution with a decision procedure.

Simplification must be provide a *canonical form* for terms of the theory.